import bisect
def kLargest(A, k):
'''returns list of k largest integers in A'''
ret = []
for i, a in enumerate(A):
# For first k elements, simply construct sorted temp list
# It is treated similarly to a priority queue
if i < k:
bisect.insort(ret, a) # properly inserts a into sorted list ret
# Iterate over rest of array
# Replace and update return array when more optimal element is found
else:
if a > ret[0]:
del ret[0] # pop min element off queue
bisect.insort(ret, a) # properly inserts a into sorted list ret
return ret
//billion is the array of 1 billion numbers
int[] billion = getMyBillionNumbers();
//this assumes these are 32-bit integers and we are using hex digits
int[][] mynums = int[8][16];
for number in billion
putInTop100Array(number)
function putInTop100Array(number){
//basically if we got past all the digits successfully
if(number == null)
return true;
msdIdx = getMsdIdx(number);
msd = getMsd(number);
//check if the idx above where we are is already full
if(mynums[msdIdx][msd+1] > 99) {
return false;
} else if(putInTop100Array(removeMSD(number)){
mynums[msdIdx][msd]++;
//we've found 100 digits here, no need to keep looking below where we are
if(mynums[msdIdx][msd] > 99){
for(int i = 0; i < mds; i++){
//making it 101 just so we can tell the difference
//between numbers where we actually found 101, and
//where we just set it
mynums[msdIdx][i] = 101;
}
}
return true;
}
return false;
}
if N[i] > M[CurrentBig] {
M[CurrentBig]=N[i]; ( overwrite the current value with the newly found larger number)
CurrentBig++; ( go to the next position in the M array)
CurrentBig %= 100; ( modulo arithmetic saves you from using lists/hashes etc.)
M[CurrentBig]=N[i]; ( pick up the current value again to use it for the next Iteration of the N array)
}