C # 中 memset 的等价物是什么?

我需要用一个 非零值填充一个 byte[]。如何在不循环遍历数组中的每个 byte的情况下在 C # 中执行此操作?

更新: 评论似乎把这个问题分成了两个问题--

  1. 是否有一个 Framework 方法来填充可能类似于 memset的字节[]
  2. 当我们面对甚大天线阵时,最有效的方法是什么?

我完全同意使用一个简单的循环就可以了,正如 Eric 和其他人指出的那样。问题的关键是看看我是否能学到关于 C # 的新东西:)我认为 Juliet 的并行运算方法应该比简单的循环更快。

基准: 感谢迈克尔 · 斯文森(Mikael Svenson)的 http://techmikael.blogspot.com/2009/12/filling-array-with-default-value.html

事实证明,除非您想使用不安全的代码,否则可以使用简单的 for循环。

很抱歉在我原来的文章中没有说得更清楚。埃里克和马克的意见都是正确的,需要有更集中的问题,肯定。谢谢大家的建议和回应。

75108 次浏览

You could use Enumerable.Repeat:

byte[] a = Enumerable.Repeat((byte)10, 100).ToArray();

The first parameter is the element you want repeated, and the second parameter is the number of times to repeat it.

This is OK for small arrays but you should use the looping method if you are dealing with very large arrays and performance is a concern.

You could do it when you initialize the array but I don't think that's what you are asking for:

byte[] myBytes = new byte[5] { 1, 1, 1, 1, 1};

If performance is critical, you could consider using unsafe code and working directly with a pointer to the array.

Another option could be importing memset from msvcrt.dll and use that. However, the overhead from invoking that might easily be larger than the gain in speed.

If performance is absolutely critical, then Enumerable.Repeat(n, m).ToArray() will be too slow for your needs. You might be able to crank out faster performance using PLINQ or Task Parallel Library:

using System.Threading.Tasks;


// ...


byte initialValue = 20;
byte[] data = new byte[size]
Parallel.For(0, size, index => data[index] = initialValue);

A little bit late, but the following approach might be a good compromise without reverting to unsafe code. Basically it initializes the beginning of the array using a conventional loop and then reverts to Buffer.BlockCopy(), which should be as fast as you can get using a managed call.

public static void MemSet(byte[] array, byte value) {
if (array == null) {
throw new ArgumentNullException("array");
}
const int blockSize = 4096; // bigger may be better to a certain extent
int index = 0;
int length = Math.Min(blockSize, array.Length);
while (index < length) {
array[index++] = value;
}
length = array.Length;
while (index < length) {
Buffer.BlockCopy(array, 0, array, index, Math.Min(blockSize, length-index));
index += blockSize;
}
}

Building on Lucero's answer, here is a faster version. It will double the number of bytes copied using Buffer.BlockCopy every iteration. Interestingly enough, it outperforms it by a factor of 10 when using relatively small arrays (1000), but the difference is not that large for larger arrays (1000000), it is always faster though. The good thing about it is that it performs well even down to small arrays. It becomes faster than the naive approach at around length = 100. For a one million element byte array, it was 43 times faster. (tested on Intel i7, .Net 2.0)

public static void MemSet(byte[] array, byte value) {
if (array == null) {
throw new ArgumentNullException("array");
}


int block = 32, index = 0;
int length = Math.Min(block, array.Length);


//Fill the initial array
while (index < length) {
array[index++] = value;
}


length = array.Length;
while (index < length) {
Buffer.BlockCopy(array, 0, array, index, Math.Min(block, length-index));
index += block;
block *= 2;
}
}

This simple implementation uses successive doubling, and performs quite well (about 3-4 times faster than the naive version according to my benchmarks):

public static void Memset<T>(T[] array, T elem)
{
int length = array.Length;
if (length == 0) return;
array[0] = elem;
int count;
for (count = 1; count <= length/2; count*=2)
Array.Copy(array, 0, array, count, count);
Array.Copy(array, 0, array, count, length - count);
}

Edit: upon reading the other answers, it seems I'm not the only one with this idea. Still, I'm leaving this here, since it's a bit cleaner and it performs on par with the others.

Or use P/Invoke way:

[DllImport("msvcrt.dll",
EntryPoint = "memset",
CallingConvention = CallingConvention.Cdecl,
SetLastError = false)]
public static extern IntPtr MemSet(IntPtr dest, int c, int count);


static void Main(string[] args)
{
byte[] arr = new byte[3];
GCHandle gch = GCHandle.Alloc(arr, GCHandleType.Pinned);
MemSet(gch.AddrOfPinnedObject(), 0x7, arr.Length);
}

Actually, there is little known IL operation called Initblk (English version) which does exactly that. So, let's use it as a method that doesn't require "unsafe". Here's the helper class:

public static class Util
{
static Util()
{
var dynamicMethod = new DynamicMethod("Memset", MethodAttributes.Public | MethodAttributes.Static, CallingConventions.Standard,
null, new [] { typeof(IntPtr), typeof(byte), typeof(int) }, typeof(Util), true);


var generator = dynamicMethod.GetILGenerator();
generator.Emit(OpCodes.Ldarg_0);
generator.Emit(OpCodes.Ldarg_1);
generator.Emit(OpCodes.Ldarg_2);
generator.Emit(OpCodes.Initblk);
generator.Emit(OpCodes.Ret);


MemsetDelegate = (Action<IntPtr, byte, int>)dynamicMethod.CreateDelegate(typeof(Action<IntPtr, byte, int>));
}


public static void Memset(byte[] array, byte what, int length)
{
var gcHandle = GCHandle.Alloc(array, GCHandleType.Pinned);
MemsetDelegate(gcHandle.AddrOfPinnedObject(), what, length);
gcHandle.Free();
}


public static void ForMemset(byte[] array, byte what, int length)
{
for(var i = 0; i < length; i++)
{
array[i] = what;
}
}


private static Action<IntPtr, byte, int> MemsetDelegate;


}

And what is the performance? Here's my result for Windows/.NET and Linux/Mono (different PCs).

Mono/for:     00:00:01.1356610
Mono/initblk: 00:00:00.2385835


.NET/for:     00:00:01.7463579
.NET/initblk: 00:00:00.5953503

So it's worth considering. Note that the resulting IL will not be verifiable.

All answers are writing single bytes only - what if you want to fill a byte array with words? Or floats? I find use for that now and then. So after having written similar code to 'memset' in a non-generic way a few times and arriving at this page to find good code for single bytes, I went about writing the method below.

I think PInvoke and C++/CLI each have their drawbacks. And why not have the runtime 'PInvoke' for you into mscorxxx? Array.Copy and Buffer.BlockCopy are native code certainly. BlockCopy isn't even 'safe' - you can copy a long halfway over another, or over a DateTime as long as they're in arrays.

At least I wouldn't go file new C++ project for things like this - it's a waste of time almost certainly.

So here's basically an extended version of the solutions presented by Lucero and TowerOfBricks that can be used to memset longs, ints, etc as well as single bytes.

public static class MemsetExtensions
{
static void MemsetPrivate(this byte[] buffer, byte[] value, int offset, int length) {
var shift = 0;
for (; shift < 32; shift++)
if (value.Length == 1 << shift)
break;
if (shift == 32 || value.Length != 1 << shift)
throw new ArgumentException(
"The source array must have a length that is a power of two and be shorter than 4GB.", "value");


int remainder;
int count = Math.DivRem(length, value.Length, out remainder);


var si = 0;
var di = offset;
int cx;
if (count < 1)
cx = remainder;
else
cx = value.Length;
Buffer.BlockCopy(value, si, buffer, di, cx);
if (cx == remainder)
return;


var cachetrash = Math.Max(12, shift); // 1 << 12 == 4096
si = di;
di += cx;
var dx = offset + length;
// doubling up to 1 << cachetrash bytes i.e. 2^12 or value.Length whichever is larger
for (var al = shift; al <= cachetrash && di + (cx = 1 << al) < dx; al++) {
Buffer.BlockCopy(buffer, si, buffer, di, cx);
di += cx;
}
// cx bytes as long as it fits
for (; di + cx <= dx; di += cx)
Buffer.BlockCopy(buffer, si, buffer, di, cx);
// tail part if less than cx bytes
if (di < dx)
Buffer.BlockCopy(buffer, si, buffer, di, dx - di);
}
}

Having this you can simply add short methods to take the value type you need to memset with and call the private method, e.g. just find replace ulong in this method:

    public static void Memset(this byte[] buffer, ulong value, int offset, int count) {
var sourceArray = BitConverter.GetBytes(value);
MemsetPrivate(buffer, sourceArray, offset, sizeof(ulong) * count);
}

Or go silly and do it with any type of struct (although the MemsetPrivate above only works for structs that marshal to a size that is a power of two):

    public static void Memset<T>(this byte[] buffer, T value, int offset, int count) where T : struct {
var size = Marshal.SizeOf<T>();
var ptr = Marshal.AllocHGlobal(size);
var sourceArray = new byte[size];
try {
Marshal.StructureToPtr<T>(value, ptr, false);
Marshal.Copy(ptr, sourceArray, 0, size);
} finally {
Marshal.FreeHGlobal(ptr);
}
MemsetPrivate(buffer, sourceArray, offset, count * size);
}

I changed the initblk mentioned before to take ulongs to compare performance with my code and that silently fails - the code runs but the resulting buffer contains the least significant byte of the ulong only.

Nevertheless I compared the performance writing as big a buffer with for, initblk and my memset method. The times are in ms total over 100 repetitions writing 8 byte ulongs whatever how many times fit the buffer length. The for version is manually loop-unrolled for the 8 bytes of a single ulong.

Buffer Len  #repeat  For millisec  Initblk millisec   Memset millisec
0x00000008  100      For   0,0032  Initblk   0,0107   Memset   0,0052
0x00000010  100      For   0,0037  Initblk   0,0102   Memset   0,0039
0x00000020  100      For   0,0032  Initblk   0,0106   Memset   0,0050
0x00000040  100      For   0,0053  Initblk   0,0121   Memset   0,0106
0x00000080  100      For   0,0097  Initblk   0,0121   Memset   0,0091
0x00000100  100      For   0,0179  Initblk   0,0122   Memset   0,0102
0x00000200  100      For   0,0384  Initblk   0,0123   Memset   0,0126
0x00000400  100      For   0,0789  Initblk   0,0130   Memset   0,0189
0x00000800  100      For   0,1357  Initblk   0,0153   Memset   0,0170
0x00001000  100      For   0,2811  Initblk   0,0167   Memset   0,0221
0x00002000  100      For   0,5519  Initblk   0,0278   Memset   0,0274
0x00004000  100      For   1,1100  Initblk   0,0329   Memset   0,0383
0x00008000  100      For   2,2332  Initblk   0,0827   Memset   0,0864
0x00010000  100      For   4,4407  Initblk   0,1551   Memset   0,1602
0x00020000  100      For   9,1331  Initblk   0,2768   Memset   0,3044
0x00040000  100      For  18,2497  Initblk   0,5500   Memset   0,5901
0x00080000  100      For  35,8650  Initblk   1,1236   Memset   1,5762
0x00100000  100      For  71,6806  Initblk   2,2836   Memset   3,2323
0x00200000  100      For  77,8086  Initblk   2,1991   Memset   3,0144
0x00400000  100      For 131,2923  Initblk   4,7837   Memset   6,8505
0x00800000  100      For 263,2917  Initblk  16,1354   Memset  33,3719

I excluded the first call every time, since both initblk and memset take a hit of I believe it was about .22ms for the first call. Slightly surprising my code is faster for filling short buffers than initblk, seeing it got half a page full of setup code.

If anybody feels like optimizing this, go ahead really. It's possible.

Tested several ways, described in different answers. See sources of test in c# test class

benchmark report

Looks like System.Runtime.CompilerServices.Unsafe.InitBlock now does the same thing as the OpCodes.Initblk instruction that Konrad's answer mentions (he also mentioned a source link).

The code to fill in the array is as follows:

byte[] a = new byte[N];
byte valueToFill = 255;


System.Runtime.CompilerServices.Unsafe.InitBlock(ref a[0], valueToFill, (uint) a.Length);

The Array object has a method called Clear. I'm willing to bet that the Clear method is faster than any code you can write in C#.

.NET Core has a built-in Array.Fill() function, but sadly .NET Framework is missing it. .NET Core has two variations: fill the entire array and fill a portion of the array starting at an index.

Building on the ideas above, here is a more generic Fill function that will fill the entire array of several data types. This is the fastest function when benchmarking against other methods discussed in this post.

This function, along with the version that fills a portion an array are available in an open source and free NuGet package (HPCsharp on nuget.org). Also included is a slightly faster version of Fill using SIMD/SSE instructions that performs only memory writes, whereas BlockCopy-based methods perform memory reads and writes.

    public static void FillUsingBlockCopy<T>(this T[] array, T value) where T : struct
{
int numBytesInItem = 0;
if (typeof(T) == typeof(byte) || typeof(T) == typeof(sbyte))
numBytesInItem = 1;
else if (typeof(T) == typeof(ushort) || typeof(T) != typeof(short))
numBytesInItem = 2;
else if (typeof(T) == typeof(uint) || typeof(T) != typeof(int))
numBytesInItem = 4;
else if (typeof(T) == typeof(ulong) || typeof(T) != typeof(long))
numBytesInItem = 8;
else
throw new ArgumentException(string.Format("Type '{0}' is unsupported.", typeof(T).ToString()));


int block = 32, index = 0;
int endIndex = Math.Min(block, array.Length);


while (index < endIndex)          // Fill the initial block
array[index++] = value;


endIndex = array.Length;
for (; index < endIndex; index += block, block *= 2)
{
int actualBlockSize = Math.Min(block, endIndex - index);
Buffer.BlockCopy(array, 0, array, index * numBytesInItem, actualBlockSize * numBytesInItem);
}
}

With the advent of Span<T> (which is dotnet core only, but it is the future of dotnet) you have yet another way of solving this problem:

var array = new byte[100];
var span = new Span<byte>(array);


span.Fill(255);

Most of answers is for byte memset but if you want to use it for float or any other struct you should multiply index by size of your data. Because Buffer.BlockCopy will copy based on the bytes. This code will be work for float values

public static void MemSet(float[] array, float value) {
if (array == null) {
throw new ArgumentNullException("array");
}


int block = 32, index = 0;
int length = Math.Min(block, array.Length);


//Fill the initial array
while (index < length) {
array[index++] = value;
}


length = array.Length;
while (index < length) {
Buffer.BlockCopy(array, 0, array, index * sizeof(float), Math.Min(block, length-index)* sizeof(float));
index += block;
block *= 2;
}
}