Explanation of each tag from the documentation :
CC: conjunction, coordinating
& 'n and both but either et for less minus neither nor or plus so
therefore times v. versus vs. whether yet
CD: numeral, cardinal
mid-1890 nine-thirty forty-two one-tenth ten million 0.5 one forty-
seven 1987 twenty '79 zero two 78-degrees eighty-four IX '60s .025
fifteen 271,124 dozen quintillion DM2,000 ...
DT: determiner
all an another any both del each either every half la many much nary
neither no some such that the them these this those
EX: existential there
there
FW: foreign word
gemeinschaft hund ich jeux habeas Haementeria Herr K'ang-si vous
lutihaw alai je jour objets salutaris fille quibusdam pas trop Monte
terram fiche oui corporis ...
IN: preposition or conjunction, subordinating
astride among uppon whether out inside pro despite on by throughout
below within for towards near behind atop around if like until below
next into if beside ...
JJ: adjective or numeral, ordinal
third ill-mannered pre-war regrettable oiled calamitous first separable
ectoplasmic battery-powered participatory fourth still-to-be-named
multilingual multi-disciplinary ...
JJR: adjective, comparative
bleaker braver breezier briefer brighter brisker broader bumper busier
calmer cheaper choosier cleaner clearer closer colder commoner costlier
cozier creamier crunchier cuter ...
JJS: adjective, superlative
calmest cheapest choicest classiest cleanest clearest closest commonest
corniest costliest crassest creepiest crudest cutest darkest deadliest
dearest deepest densest dinkiest ...
LS: list item marker
A A. B B. C C. D E F First G H I J K One SP-44001 SP-44002 SP-44005
SP-44007 Second Third Three Two * a b c d first five four one six three
two
MD: modal auxiliary
can cannot could couldn't dare may might must need ought shall should
shouldn't will would
NN: noun, common, singular or mass
common-carrier cabbage knuckle-duster Casino afghan shed thermostat
investment slide humour falloff slick wind hyena override subhumanity
machinist ...
NNS: noun, common, plural
undergraduates scotches bric-a-brac products bodyguards facets coasts
divestitures storehouses designs clubs fragrances averages
subjectivists apprehensions muses factory-jobs ...
NNP: noun, proper, singular
Motown Venneboerger Czestochwa Ranzer Conchita Trumplane Christos
Oceanside Escobar Kreisler Sawyer Cougar Yvette Ervin ODI Darryl CTCA
Shannon A.K.C. Meltex Liverpool ...
NNPS: noun, proper, plural
Americans Americas Amharas Amityvilles Amusements Anarcho-Syndicalists
Andalusians Andes Andruses Angels Animals Anthony Antilles Antiques
Apache Apaches Apocrypha ...
PDT: pre-determiner
all both half many quite such sure this
POS: genitive marker
' 's
PRP: pronoun, personal
hers herself him himself hisself it itself me myself one oneself ours
ourselves ownself self she thee theirs them themselves they thou thy us
PRP$: pronoun, possessive
her his mine my our ours their thy your
RB: adverb
occasionally unabatingly maddeningly adventurously professedly
stirringly prominently technologically magisterially predominately
swiftly fiscally pitilessly ...
RBR: adverb, comparative
further gloomier grander graver greater grimmer harder harsher
healthier heavier higher however larger later leaner lengthier less-
perfectly lesser lonelier longer louder lower more ...
RBS: adverb, superlative
best biggest bluntest earliest farthest first furthest hardest
heartiest highest largest least less most nearest second tightest worst
RP: particle
aboard about across along apart around aside at away back before behind
by crop down ever fast for forth from go high i.e. in into just later
low more off on open out over per pie raising start teeth that through
under unto up up-pp upon whole with you
SYM: symbol
% & ' '' ''. ) ). * + ,. < = > @ A[fj] U.S U.S.S.R * ** ***
TO: "to" as preposition or infinitive marker
to
UH: interjection
Goodbye Goody Gosh Wow Jeepers Jee-sus Hubba Hey Kee-reist Oops amen
huh howdy uh dammit whammo shucks heck anyways whodunnit honey golly
man baby diddle hush sonuvabitch ...
VB: verb, base form
ask assemble assess assign assume atone attention avoid bake balkanize
bank begin behold believe bend benefit bevel beware bless boil bomb
boost brace break bring broil brush build ...
VBD: verb, past tense
dipped pleaded swiped regummed soaked tidied convened halted registered
cushioned exacted snubbed strode aimed adopted belied figgered
speculated wore appreciated contemplated ...
VBG: verb, present participle or gerund
telegraphing stirring focusing angering judging stalling lactating
hankerin' alleging veering capping approaching traveling besieging
encrypting interrupting erasing wincing ...
VBN: verb, past participle
multihulled dilapidated aerosolized chaired languished panelized used
experimented flourished imitated reunifed factored condensed sheared
unsettled primed dubbed desired ...
VBP: verb, present tense, not 3rd person singular
predominate wrap resort sue twist spill cure lengthen brush terminate
appear tend stray glisten obtain comprise detest tease attract
emphasize mold postpone sever return wag ...
VBZ: verb, present tense, 3rd person singular
bases reconstructs marks mixes displeases seals carps weaves snatches
slumps stretches authorizes smolders pictures emerges stockpiles
seduces fizzes uses bolsters slaps speaks pleads ...
WDT: WH-determiner
that what whatever which whichever
WP: WH-pronoun
that what whatever whatsoever which who whom whosoever
WP$: WH-pronoun, possessive
whose
WRB: Wh-adverb
how however whence whenever where whereby whereever wherein whereof why
/**
* Represents the English parts-of-speech, encoded using the
* de facto <a href="http://www.cis.upenn.edu/~treebank/">Penn Treebank
* Project</a> standard.
*
* @see <a href="ftp://ftp.cis.upenn.edu/pub/treebank/doc/tagguide.ps.gz">Penn Treebank Specification</a>
*/
public enum PartOfSpeech {
ADJECTIVE( "JJ" ),
ADJECTIVE_COMPARATIVE( ADJECTIVE + "R" ),
ADJECTIVE_SUPERLATIVE( ADJECTIVE + "S" ),
/* This category includes most words that end in -ly as well as degree
* words like quite, too and very, posthead modi ers like enough and
* indeed (as in good enough, very well indeed), and negative markers like
* not, n't and never.
*/
ADVERB( "RB" ),
/* Adverbs with the comparative ending -er but without a strictly comparative
* meaning, like <i>later</i> in <i>We can always come by later</i>, should
* simply be tagged as RB.
*/
ADVERB_COMPARATIVE( ADVERB + "R" ),
ADVERB_SUPERLATIVE( ADVERB + "S" ),
/* This category includes how, where, why, etc.
*/
ADVERB_WH( "W" + ADVERB ),
/* This category includes and, but, nor, or, yet (as in Y et it's cheap,
* cheap yet good), as well as the mathematical operators plus, minus, less,
* times (in the sense of "multiplied by") and over (in the sense of "divided
* by"), when they are spelled out. <i>For</i> in the sense of "because" is
* a coordinating conjunction (CC) rather than a subordinating conjunction.
*/
CONJUNCTION_COORDINATING( "CC" ),
CONJUNCTION_SUBORDINATING( "IN" ),
CARDINAL_NUMBER( "CD" ),
DETERMINER( "DT" ),
/* This category includes which, as well as that when it is used as a
* relative pronoun.
*/
DETERMINER_WH( "W" + DETERMINER ),
EXISTENTIAL_THERE( "EX" ),
FOREIGN_WORD( "FW" ),
LIST_ITEM_MARKER( "LS" ),
NOUN( "NN" ),
NOUN_PLURAL( NOUN + "S" ),
NOUN_PROPER_SINGULAR( NOUN + "P" ),
NOUN_PROPER_PLURAL( NOUN + "PS" ),
PREDETERMINER( "PDT" ),
POSSESSIVE_ENDING( "POS" ),
PRONOUN_PERSONAL( "PRP" ),
PRONOUN_POSSESSIVE( "PRP$" ),
/* This category includes the wh-word whose.
*/
PRONOUN_POSSESSIVE_WH( "WP$" ),
/* This category includes what, who and whom.
*/
PRONOUN_WH( "WP" ),
PARTICLE( "RP" ),
/* This tag should be used for mathematical, scientific and technical symbols
* or expressions that aren't English words. It should not used for any and
* all technical expressions. For instance, the names of chemicals, units of
* measurements (including abbreviations thereof) and the like should be
* tagged as nouns.
*/
SYMBOL( "SYM" ),
TO( "TO" ),
/* This category includes my (as in M y, what a gorgeous day), oh, please,
* see (as in See, it's like this), uh, well and yes, among others.
*/
INTERJECTION( "UH" ),
VERB( "VB" ),
VERB_PAST_TENSE( VERB + "D" ),
VERB_PARTICIPLE_PRESENT( VERB + "G" ),
VERB_PARTICIPLE_PAST( VERB + "N" ),
VERB_SINGULAR_PRESENT_NONTHIRD_PERSON( VERB + "P" ),
VERB_SINGULAR_PRESENT_THIRD_PERSON( VERB + "Z" ),
/* This category includes all verbs that don't take an -s ending in the
* third person singular present: can, could, (dare), may, might, must,
* ought, shall, should, will, would.
*/
VERB_MODAL( "MD" ),
/* Stanford.
*/
SENTENCE_TERMINATOR( "." );
private final String tag;
private PartOfSpeech( String tag ) {
this.tag = tag;
}
/**
* Returns the encoding for this part-of-speech.
*
* @return A string representing a Penn Treebank encoding for an English
* part-of-speech.
*/
public String toString() {
return getTag();
}
protected String getTag() {
return this.tag;
}
public static PartOfSpeech get( String value ) {
for( PartOfSpeech v : values() ) {
if( value.equals( v.getTag() ) ) {
return v;
}
}
throw new IllegalArgumentException( "Unknown part of speech: '" + value + "'." );
}
}
Stanford CoreNLP POS Tagger for German 使用 < a href = “ https://www.ims.uni-stuttgart.de/forschung/ressource/lexika/TagSet/STTS-table.html”rel = “ nofollow noReferrer”> Stuttgart-Tübingen Tag Set (STTS)
Stanford CoreNLP 用于法语的 POS 标签使用以下标签:
法语标签:
法语部分词语标签
A (adjective)
Adv (adverb)
CC (coordinating conjunction)
Cl (weak clitic pronoun)
CS (subordinating conjunction)
D (determiner)
ET (foreign word)
I (interjection)
NC (common noun)
NP (proper noun)
P (preposition)
PREF (prefix)
PRO (strong pronoun)
V (verb)
PONCT (punctuation mark)
SUJ (subject)
OBJ (direct object)
ATS (predicative complement of a subject)
ATO (predicative complement of a direct object)
MOD (modifier or adjunct)
A-OBJ (indirect complement introduced by à)
DE-OBJ (indirect complement introduced by de)
P-OBJ (indirect complement introduced by another preposition)
import spacy
import time
start = time.time()
with open('d:/dictionary/e-store.txt') as f:
input = f.read()
word = 0
result = []
nlp = spacy.load("en_core_web_sm")
doc = nlp(input)
for token in doc:
if token.pos_ == "NOUN":
result.append(token.text)
word += 1
elapsed = time.time() - start
print("From", word, "words, there is", len(result), "NOUN found in", elapsed, "seconds")
几次试验的结果:
From 3547 words, there is 913 NOUN found in 7.768507719039917 seconds
From 3547 words, there is 913 NOUN found in 7.408619403839111 seconds
From 3547 words, there is 913 NOUN found in 7.431427955627441 seconds
From 3547 words, there is 913 NOUN found in 6.212834596633911 seconds
From 3547 words, there is 913 NOUN found in 6.257707595825195 seconds
From 3547 words, there is 913 NOUN found in 6.371225833892822 seconds