How to query MultiIndex index columns values in pandas

Code example:

In [171]: A = np.array([1.1, 1.1, 3.3, 3.3, 5.5, 6.6])


In [172]: B = np.array([111, 222, 222, 333, 333, 777])


In [173]: C = randint(10, 99, 6)


In [174]: df = pd.DataFrame(zip(A, B, C), columns=['A', 'B', 'C'])


In [175]: df.set_index(['A', 'B'], inplace=True)


In [176]: df
Out[176]:
C
A   B
1.1 111  20
222  31
3.3 222  24
333  65
5.5 333  22
6.6 777  74

Now, I want to retrieve A values:
Q1: in range [3.3, 6.6] - expected return value: [3.3, 5.5, 6.6] or [3.3, 3.3, 5.5, 6.6] in case last inclusive, and [3.3, 5.5] or [3.3, 3.3, 5.5] if not.
Q2: in range [2.0, 4.0] - expected return value: [3.3] or [3.3, 3.3]

Same for any other MultiIndex dimension, for example B values:
Q3: in range [111, 500] with repetitions, as number of data rows in range - expected return value: [111, 222, 222, 333, 333]

More formal:

Let us assume T is a table with columns A, B and C. The table includes n rows. Table cells are numbers, for example A double, B and C integers. Let's create a DataFrame of table T, let us name it DF. Let's set columns A and B indexes of DF (without duplication, i.e. no separate columns A and B as indexes, and separate as data), i.e. A and B in this case MultiIndex.

Questions:

  1. How to write a query on the index, for example, to query the index A (or B), say in the labels interval [120.0, 540.0]? Labels 120.0 and 540.0 exist. I must clarify that I am interested only in the list of indices as a response to the query!
  2. How to the same, but in case of the labels 120.0 and 540.0 do not exist, but there are labels by value lower than 120, higher than 120 and less than 540, or higher than 540?
  3. In case the answer for Q1 and Q2 was unique index values, now the same, but with repetitions, as number of data rows in index range.

I know the answers to the above questions in the case of columns which are not indexes, but in the indexes case, after a long research in the web and experimentation with the functionality of pandas, I did not succeed. The only method (without additional programming) I see now is to have a duplicate of A and B as data columns in addition to index.

121443 次浏览

With a 'float' like index you always want to use it as a column rather than a direct indexing action. These will all work whether the endpoints exist or not.

In [11]: df
Out[11]:
C
A   B
1.1 111  81
222  45
3.3 222  98
333  13
5.5 333  89
6.6 777  98


In [12]: x = df.reset_index()

Q1

In [13]: x.loc[(x.A>=3.3)&(x.A<=6.6)]
Out[13]:
A    B   C
2  3.3  222  98
3  3.3  333  13
4  5.5  333  89
5  6.6  777  98

Q2

In [14]: x.loc[(x.A>=2.0)&(x.A<=4.0)]
Out[14]:
A    B   C
2  3.3  222  98
3  3.3  333  13

Q3

In [15]: x.loc[(x.B>=111.0)&(x.B<=500.0)]
Out[15]:
A    B   C
0  1.1  111  81
1  1.1  222  45
2  3.3  222  98
3  3.3  333  13
4  5.5  333  89

If you want the indices back, just set them. This is a cheap operation.

In [16]: x.loc[(x.B>=111.0)&(x.B<=500.0)].set_index(['A','B'])
Out[16]:
C
A   B
1.1 111  81
222  45
3.3 222  98
333  13
5.5 333  89

If you REALLY want the actual index values

In [5]: x.loc[(x.B>=111.0)&(x.B<=500.0)].set_index(['A','B']).index
Out[5]:
MultiIndex
[(1.1, 111), (1.1, 222), (3.3, 222), (3.3, 333), (5.5, 333)]

To query the df by the MultiIndex values, for example where (A > 1.7) and (B < 666):

In [536]: result_df = df.loc[(df.index.get_level_values('A') > 1.7) & (df.index.get_level_values('B') < 666)]


In [537]: result_df
Out[537]:
C
A   B
3.3 222  43
333  59
5.5 333  56

Hence, to get for example the 'A' index values, if still required:

In [538]: result_df.index.get_level_values('A')
Out[538]: Index([3.3, 3.3, 5.5], dtype=object)

The problem is, that in large data frames the performance of by index selection worse by 10% than the sorted regular rows selection. And in repetitive work, looping, the delay accumulated. See example:

In [558]: df = store.select(STORE_EXTENT_BURSTS_DF_KEY)


In [559]: len(df)
Out[559]: 12857


In [560]: df.sort(inplace=True)


In [561]: df_without_index = df.reset_index()


In [562]: %timeit df.loc[(df.index.get_level_values('END_TIME') > 358200) & (df.index.get_level_values('START_TIME') < 361680)]
1000 loops, best of 3: 562 µs per loop


In [563]: %timeit df_without_index[(df_without_index.END_TIME > 358200) & (df_without_index.START_TIME < 361680)]
1000 loops, best of 3: 507 µs per loop

For better readability, we can simply use the query() Method, to avoid the lengthy df.index.get_level_values() and reset_index/set_index to and fro.

Here is the target DataFrame:

In [12]: df
Out[12]:
C
A   B
1.1 111  68
222  40
3.3 222  20
333  11
5.5 333  80
6.6 777  51

Answer for Q1 (A in range [3.3, 6.6]):

In [13]: df.query('3.3 <= A <= 6.6') # for closed interval
Out[13]:
C
A   B
3.3 222  20
333  11
5.5 333  80
6.6 777  51


In [14]: df.query('3.3 < A < 6.6') # for open interval
Out[14]:
C
A   B
5.5 333  80

and of course one can play around with <, <=, >, >= for any kind of inclusion.


Similarly, answer for Q2 (A in range [2.0, 4.0]):

In [15]: df.query('2.0 <= A <= 4.0')
Out[15]:
C
A   B
3.3 222  20
333  11

Answer for Q3 (B in range [111, 500]):

In [16]: df.query('111 <= B <= 500')
Out[16]:
C
A   B
1.1 111  68
222  40
3.3 222  20
333  11
5.5 333  80

And moreover, you can COMBINE the query for col A and B very naturally!

In [17]: df.query('0 < A < 4 and 150 < B < 400')
Out[17]:
C
A   B
1.1 222  40
3.3 222  20
333  11