void quicksort(int* array, int left, int right)
{
if(left >= right)
return;
int index = partition(array, left, right);
quicksort(array, left, index - 1);
quicksort(array, index + 1, right);
}
以下是我们如何通过保持自己的堆栈来实现迭代:
void quicksort(int *array, int left, int right)
{
int stack[1024];
int i=0;
stack[i++] = left;
stack[i++] = right;
while (i > 0)
{
right = stack[--i];
left = stack[--i];
if (left >= right)
continue;
int index = partition(array, left, right);
stack[i++] = left;
stack[i++] = index - 1;
stack[i++] = index + 1;
stack[i++] = right;
}
}
var stack = [];
stack.push(firstObject);
// while not empty
while (stack.length) {
// Pop off end of stack.
obj = stack.pop();
// Do stuff.
// Push other objects on the stack as needed.
...
}
int Sum(int index, int[] array)
{
//This is the termination condition
if (int >= array.Length)
//This is the returning value when termination condition is true
return 0;
//This is the recursive call
var sumofrest = Sum(index+1, array);
//This is the work to do with the current item and the
//result of recursive call
return array[index]+sumofrest;
}
变成:
int Sum(int[] ar)
{
return RecursionHelper<int>.CreateSingular(i => i >= ar.Length, i => 0)
.RecursiveCall((i, rv) => i + 1)
.Do((i, rv) => ar[i] + rv)
.Execute(0);
}
// Identify the stack variables that need to be preserved across stack
// invocations, that is, across iterations and wrap them in an object
struct stackitem
{
stackitem(tnode *t, int n) : node(t), num(n), ra(0) {}
tnode *node; int num;
int ra; //to point of return
};
void insertnode_iter(tnode *node, int num)
{
vector<stackitem> v;
//pushing a stackitem is equivalent to making a recursive call.
v.push_back(stackitem(node, num));
while(v.size())
{
// taking a modifiable reference to the stack item makes prepending
// 'si.' to auto variables in recursive logic suffice
// e.g., instead of num, replace with si.num.
stackitem &si = v.back();
switch(si.ra)
{
// this jump simulates resuming execution after return from recursive
// call
case 1: goto ra1;
case 2: goto ra2;
default: break;
}
if(si.node->data <= si.num)
{
if(si.node->right == NULL)
si.node->right = new tnode(si.num);
else
{
// replace a recursive call with below statements
// (a) save return point,
// (b) push stack item with new stackitem,
// (c) continue statement to make loop pick up and start
// processing new stack item,
// (d) a return point label
// (e) optional semi-colon, if resume point is an end
// of a block.
si.ra=1;
v.push_back(stackitem(si.node->right, si.num));
continue;
ra1: ;
}
}
else
{
if(si.node->left == NULL)
si.node->left = new tnode(si.num);
else
{
si.ra=2;
v.push_back(stackitem(si.node->left, si.num));
continue;
ra2: ;
}
}
v.pop_back();
}
}
if(task can be done directly) {
return result of doing task directly
} else {
split task into two or more parts
solve for each part (possibly by recursing)
return result constructed by combining these solutions
}
例如,经典的河内塔
if(the number of discs to move is 1) {
just move it
} else {
move n-1 discs to the spare peg
move the remaining disc to the target peg
move n-1 discs from the spare peg to the target peg, using the current peg as a spare
}
这可以转化为一个循环工作在一个显式的堆栈,通过重申它为:
place seed task on stack
while stack is not empty
take a task off the stack
if(task can be done directly) {
Do it
} else {
Split task into two or more parts
Place task to consolidate results on stack
Place each task on stack
}
}
#include <iostream>
#include <stack>
using namespace std;
int GCD(int a, int b) { return b == 0 ? a : GCD(b, a % b); }
struct Par
{
int a, b;
Par() : Par(0, 0) {}
Par(int _a, int _b) : a(_a), b(_b) {}
};
int GCDIter(int a, int b)
{
stack<Par> rcstack;
if (b == 0)
return a;
rcstack.push(Par(b, a % b));
Par p;
while (!rcstack.empty())
{
p = rcstack.top();
rcstack.pop();
if (p.b == 0)
continue;
rcstack.push(Par(p.b, p.a % p.b));
}
return p.a;
}
int main()
{
//cout << GCD(24, 36) << endl;
cout << GCDIter(81, 36) << endl;
cin.get();
return 0;
}
startNode = pos(x,y)
Stack stack = new Stack();
Dictionary visited<pos, bool> = new Dictionary();
stack.Push(startNode);
while(stack.count != 0){
currentNode = stack.Pop();
if "check currentNode if not available"
continue;
if "check if already handled"
continue;
else if "run if it must be wanted thing should be handled"
// make something with pos currentNode.X and currentNode.X
// then add its neighbor nodes to the stack to iterate
// but at first check if it has already been visited.
if(!visited.Contains(pos(x-1,y)))
visited[pos(x-1,y)] = true;
stack.Push(pos(x-1,y));
if(!visited.Contains(pos(x+1,y)))
...
if(!visited.Contains(pos(x,y+1)))
...
if(!visited.Contains(pos(x,y-1)))
...
}
# Assume `a` is view-like object where slices reference
# the same internal list of strings.
def sort(a: list_view):
stack = []
stack.append((LEFT, a, 0)) # Initial frame.
while len(stack) > 0:
frame = stack.pop()
if len(frame[1]) <= 1: # Guard.
continue
stage = frame[0] # Where to jump to.
if stage == LEFT:
_, a, d = frame # a - array/list, d - depth.
p = pivot(a, d)
i, j = partition(a, d, p)
stack.append((MID, a, i, j, d)) # Where to go after "return".
stack.append((LEFT, a[0:i], d)) # Simulate function call.
elif stage == MID: # Picking up here after "call"
_, a, i, j, d = frame # State before "call" restored.
stack.append((RIGHT, a, i, j, d)) # Set up for next "return".
stack.append((LEFT, a[i:j], d + 1)) # Split list and "recurse".
elif stage == RIGHT:
_, a, _, j, d = frame
stack.append((LEFT, a[j:len(a)], d)
else:
pass