计算二维数组中维数的平均值

我有一个像这样的数组 a:

a = [[40, 10], [50, 11]]

我需要分别计算每个维度的平均值,结果应该是这样的:

[45, 10.5]

45a[*][0]的平均值,10.5a[*][1]的平均值。

在不使用循环的情况下,解决这个问题的最优雅的方法是什么?

188688 次浏览

a.mean() takes an axis argument:

In [1]: import numpy as np


In [2]: a = np.array([[40, 10], [50, 11]])


In [3]: a.mean(axis=1)     # to take the mean of each row
Out[3]: array([ 25. ,  30.5])


In [4]: a.mean(axis=0)     # to take the mean of each col
Out[4]: array([ 45. ,  10.5])

Or, as a standalone function:

In [5]: np.mean(a, axis=1)
Out[5]: array([ 25. ,  30.5])

The reason your slicing wasn't working is because this is the syntax for slicing:

In [6]: a[:,0].mean() # first column
Out[6]: 45.0


In [7]: a[:,1].mean() # second column
Out[7]: 10.5

If you do this a lot, NumPy is the way to go.

If for some reason you can't use NumPy:

>>> map(lambda x:sum(x)/float(len(x)), zip(*a))
[45.0, 10.5]

Here is a non-numpy solution:

>>> a = [[40, 10], [50, 11]]
>>> [float(sum(l))/len(l) for l in zip(*a)]
[45.0, 10.5]