大熊猫: 按时间间隔的滚动平均值

我有一堆民意调查数据,我想计算一个熊猫滚动平均值,得到一个基于三天窗口的每一天的估计值。根据 这个问题rolling_*函数根据指定数量的值计算窗口,而不是特定的日期时间范围。

我如何实现这个功能?

输入数据样本:

polls_subset.tail(20)
Out[185]:
favorable  unfavorable  other


enddate
2012-10-25       0.48         0.49   0.03
2012-10-25       0.51         0.48   0.02
2012-10-27       0.51         0.47   0.02
2012-10-26       0.56         0.40   0.04
2012-10-28       0.48         0.49   0.04
2012-10-28       0.46         0.46   0.09
2012-10-28       0.48         0.49   0.03
2012-10-28       0.49         0.48   0.03
2012-10-30       0.53         0.45   0.02
2012-11-01       0.49         0.49   0.03
2012-11-01       0.47         0.47   0.05
2012-11-01       0.51         0.45   0.04
2012-11-03       0.49         0.45   0.06
2012-11-04       0.53         0.39   0.00
2012-11-04       0.47         0.44   0.08
2012-11-04       0.49         0.48   0.03
2012-11-04       0.52         0.46   0.01
2012-11-04       0.50         0.47   0.03
2012-11-05       0.51         0.46   0.02
2012-11-07       0.51         0.41   0.00

每个日期的输出只有一行。

175239 次浏览

What about something like this:

First resample the data frame into 1D intervals. This takes the mean of the values for all duplicate days. Use the fill_method option to fill in missing date values. Next, pass the resampled frame into pd.rolling_mean with a window of 3 and min_periods=1 :

pd.rolling_mean(df.resample("1D", fill_method="ffill"), window=3, min_periods=1)


favorable  unfavorable     other
enddate
2012-10-25   0.495000     0.485000  0.025000
2012-10-26   0.527500     0.442500  0.032500
2012-10-27   0.521667     0.451667  0.028333
2012-10-28   0.515833     0.450000  0.035833
2012-10-29   0.488333     0.476667  0.038333
2012-10-30   0.495000     0.470000  0.038333
2012-10-31   0.512500     0.460000  0.029167
2012-11-01   0.516667     0.456667  0.026667
2012-11-02   0.503333     0.463333  0.033333
2012-11-03   0.490000     0.463333  0.046667
2012-11-04   0.494000     0.456000  0.043333
2012-11-05   0.500667     0.452667  0.036667
2012-11-06   0.507333     0.456000  0.023333
2012-11-07   0.510000     0.443333  0.013333

UPDATE: As Ben points out in the comments, with pandas 0.18.0 the syntax has changed. With the new syntax this would be:

df.resample("1d").sum().fillna(0).rolling(window=3, min_periods=1).mean()

I just had the same question but with irregularly spaced datapoints. Resample is not really an option here. So I created my own function. Maybe it will be useful for others too:

from pandas import Series, DataFrame
import pandas as pd
from datetime import datetime, timedelta
import numpy as np


def rolling_mean(data, window, min_periods=1, center=False):
''' Function that computes a rolling mean


Parameters
----------
data : DataFrame or Series
If a DataFrame is passed, the rolling_mean is computed for all columns.
window : int or string
If int is passed, window is the number of observations used for calculating
the statistic, as defined by the function pd.rolling_mean()
If a string is passed, it must be a frequency string, e.g. '90S'. This is
internally converted into a DateOffset object, representing the window size.
min_periods : int
Minimum number of observations in window required to have a value.


Returns
-------
Series or DataFrame, if more than one column
'''
def f(x):
'''Function to apply that actually computes the rolling mean'''
if center == False:
dslice = col[x-pd.datetools.to_offset(window).delta+timedelta(0,0,1):x]
# adding a microsecond because when slicing with labels start and endpoint
# are inclusive
else:
dslice = col[x-pd.datetools.to_offset(window).delta/2+timedelta(0,0,1):
x+pd.datetools.to_offset(window).delta/2]
if dslice.size < min_periods:
return np.nan
else:
return dslice.mean()


data = DataFrame(data.copy())
dfout = DataFrame()
if isinstance(window, int):
dfout = pd.rolling_mean(data, window, min_periods=min_periods, center=center)
elif isinstance(window, basestring):
idx = Series(data.index.to_pydatetime(), index=data.index)
for colname, col in data.iterkv():
result = idx.apply(f)
result.name = colname
dfout = dfout.join(result, how='outer')
if dfout.columns.size == 1:
dfout = dfout.ix[:,0]
return dfout




# Example
idx = [datetime(2011, 2, 7, 0, 0),
datetime(2011, 2, 7, 0, 1),
datetime(2011, 2, 7, 0, 1, 30),
datetime(2011, 2, 7, 0, 2),
datetime(2011, 2, 7, 0, 4),
datetime(2011, 2, 7, 0, 5),
datetime(2011, 2, 7, 0, 5, 10),
datetime(2011, 2, 7, 0, 6),
datetime(2011, 2, 7, 0, 8),
datetime(2011, 2, 7, 0, 9)]
idx = pd.Index(idx)
vals = np.arange(len(idx)).astype(float)
s = Series(vals, index=idx)
rm = rolling_mean(s, window='2min')

user2689410's code was exactly what I needed. Providing my version (credits to user2689410), which is faster due to calculating mean at once for whole rows in the DataFrame.

Hope my suffix conventions are readable: _s: string, _i: int, _b: bool, _ser: Series and _df: DataFrame. Where you find multiple suffixes, type can be both.

import pandas as pd
from datetime import datetime, timedelta
import numpy as np


def time_offset_rolling_mean_df_ser(data_df_ser, window_i_s, min_periods_i=1, center_b=False):
""" Function that computes a rolling mean


Credit goes to user2689410 at http://stackoverflow.com/questions/15771472/pandas-rolling-mean-by-time-interval


Parameters
----------
data_df_ser : DataFrame or Series
If a DataFrame is passed, the time_offset_rolling_mean_df_ser is computed for all columns.
window_i_s : int or string
If int is passed, window_i_s is the number of observations used for calculating
the statistic, as defined by the function pd.time_offset_rolling_mean_df_ser()
If a string is passed, it must be a frequency string, e.g. '90S'. This is
internally converted into a DateOffset object, representing the window_i_s size.
min_periods_i : int
Minimum number of observations in window_i_s required to have a value.


Returns
-------
Series or DataFrame, if more than one column


>>> idx = [
...     datetime(2011, 2, 7, 0, 0),
...     datetime(2011, 2, 7, 0, 1),
...     datetime(2011, 2, 7, 0, 1, 30),
...     datetime(2011, 2, 7, 0, 2),
...     datetime(2011, 2, 7, 0, 4),
...     datetime(2011, 2, 7, 0, 5),
...     datetime(2011, 2, 7, 0, 5, 10),
...     datetime(2011, 2, 7, 0, 6),
...     datetime(2011, 2, 7, 0, 8),
...     datetime(2011, 2, 7, 0, 9)]
>>> idx = pd.Index(idx)
>>> vals = np.arange(len(idx)).astype(float)
>>> ser = pd.Series(vals, index=idx)
>>> df = pd.DataFrame({'s1':ser, 's2':ser+1})
>>> time_offset_rolling_mean_df_ser(df, window_i_s='2min')
s1   s2
2011-02-07 00:00:00  0.0  1.0
2011-02-07 00:01:00  0.5  1.5
2011-02-07 00:01:30  1.0  2.0
2011-02-07 00:02:00  2.0  3.0
2011-02-07 00:04:00  4.0  5.0
2011-02-07 00:05:00  4.5  5.5
2011-02-07 00:05:10  5.0  6.0
2011-02-07 00:06:00  6.0  7.0
2011-02-07 00:08:00  8.0  9.0
2011-02-07 00:09:00  8.5  9.5
"""


def calculate_mean_at_ts(ts):
"""Function (closure) to apply that actually computes the rolling mean"""
if center_b == False:
dslice_df_ser = data_df_ser[
ts-pd.datetools.to_offset(window_i_s).delta+timedelta(0,0,1):
ts
]
# adding a microsecond because when slicing with labels start and endpoint
# are inclusive
else:
dslice_df_ser = data_df_ser[
ts-pd.datetools.to_offset(window_i_s).delta/2+timedelta(0,0,1):
ts+pd.datetools.to_offset(window_i_s).delta/2
]
if  (isinstance(dslice_df_ser, pd.DataFrame) and dslice_df_ser.shape[0] < min_periods_i) or \
(isinstance(dslice_df_ser, pd.Series) and dslice_df_ser.size < min_periods_i):
return dslice_df_ser.mean()*np.nan   # keeps number format and whether Series or DataFrame
else:
return dslice_df_ser.mean()


if isinstance(window_i_s, int):
mean_df_ser = pd.rolling_mean(data_df_ser, window=window_i_s, min_periods=min_periods_i, center=center_b)
elif isinstance(window_i_s, basestring):
idx_ser = pd.Series(data_df_ser.index.to_pydatetime(), index=data_df_ser.index)
mean_df_ser = idx_ser.apply(calculate_mean_at_ts)


return mean_df_ser

I found that user2689410 code broke when I tried with window='1M' as the delta on business month threw this error:

AttributeError: 'MonthEnd' object has no attribute 'delta'

I added the option to pass directly a relative time delta, so you can do similar things for user defined periods.

Thanks for the pointers, here's my attempt - hope it's of use.

def rolling_mean(data, window, min_periods=1, center=False):
""" Function that computes a rolling mean
Reference:
http://stackoverflow.com/questions/15771472/pandas-rolling-mean-by-time-interval


Parameters
----------
data : DataFrame or Series
If a DataFrame is passed, the rolling_mean is computed for all columns.
window : int, string, Timedelta or Relativedelta
int - number of observations used for calculating the statistic,
as defined by the function pd.rolling_mean()
string - must be a frequency string, e.g. '90S'. This is
internally converted into a DateOffset object, and then
Timedelta representing the window size.
Timedelta / Relativedelta - Can directly pass a timedeltas.
min_periods : int
Minimum number of observations in window required to have a value.
center : bool
Point around which to 'center' the slicing.


Returns
-------
Series or DataFrame, if more than one column
"""
def f(x, time_increment):
"""Function to apply that actually computes the rolling mean
:param x:
:return:
"""
if not center:
# adding a microsecond because when slicing with labels start
# and endpoint are inclusive
start_date = x - time_increment + timedelta(0, 0, 1)
end_date = x
else:
start_date = x - time_increment/2 + timedelta(0, 0, 1)
end_date = x + time_increment/2
# Select the date index from the
dslice = col[start_date:end_date]


if dslice.size < min_periods:
return np.nan
else:
return dslice.mean()


data = DataFrame(data.copy())
dfout = DataFrame()
if isinstance(window, int):
dfout = pd.rolling_mean(data, window, min_periods=min_periods, center=center)


elif isinstance(window, basestring):
time_delta = pd.datetools.to_offset(window).delta
idx = Series(data.index.to_pydatetime(), index=data.index)
for colname, col in data.iteritems():
result = idx.apply(lambda x: f(x, time_delta))
result.name = colname
dfout = dfout.join(result, how='outer')


elif isinstance(window, (timedelta, relativedelta)):
time_delta = window
idx = Series(data.index.to_pydatetime(), index=data.index)
for colname, col in data.iteritems():
result = idx.apply(lambda x: f(x, time_delta))
result.name = colname
dfout = dfout.join(result, how='outer')


if dfout.columns.size == 1:
dfout = dfout.ix[:, 0]
return dfout

And the example with a 3 day time window to calculate the mean:

from pandas import Series, DataFrame
import pandas as pd
from datetime import datetime, timedelta
import numpy as np
from dateutil.relativedelta import relativedelta


idx = [datetime(2011, 2, 7, 0, 0),
datetime(2011, 2, 7, 0, 1),
datetime(2011, 2, 8, 0, 1, 30),
datetime(2011, 2, 9, 0, 2),
datetime(2011, 2, 10, 0, 4),
datetime(2011, 2, 11, 0, 5),
datetime(2011, 2, 12, 0, 5, 10),
datetime(2011, 2, 12, 0, 6),
datetime(2011, 2, 13, 0, 8),
datetime(2011, 2, 14, 0, 9)]
idx = pd.Index(idx)
vals = np.arange(len(idx)).astype(float)
s = Series(vals, index=idx)
# Now try by passing the 3 days as a relative time delta directly.
rm = rolling_mean(s, window=relativedelta(days=3))
>>> rm
Out[2]:
2011-02-07 00:00:00    0.0
2011-02-07 00:01:00    0.5
2011-02-08 00:01:30    1.0
2011-02-09 00:02:00    1.5
2011-02-10 00:04:00    3.0
2011-02-11 00:05:00    4.0
2011-02-12 00:05:10    5.0
2011-02-12 00:06:00    5.5
2011-02-13 00:08:00    6.5
2011-02-14 00:09:00    7.5
Name: 0, dtype: float64

This example seems to call for a weighted mean as suggested in @andyhayden's comment. For example, there are two polls on 10/25 and one each on 10/26 and 10/27. If you just resample and then take the mean, this effectively gives twice as much weighting to the polls on 10/26 and 10/27 compared to the ones on 10/25.

To give equal weight to each poll rather than equal weight to each day, you could do something like the following.

>>> wt = df.resample('D',limit=5).count()


favorable  unfavorable  other
enddate
2012-10-25          2            2      2
2012-10-26          1            1      1
2012-10-27          1            1      1


>>> df2 = df.resample('D').mean()


favorable  unfavorable  other
enddate
2012-10-25      0.495        0.485  0.025
2012-10-26      0.560        0.400  0.040
2012-10-27      0.510        0.470  0.020

That gives you the raw ingredients for doing a poll-based mean instead of a day-based mean. As before, the polls are averaged on 10/25, but the weight for 10/25 is also stored and is double the weight on 10/26 or 10/27 to reflect that two polls were taken on 10/25.

>>> df3 = df2 * wt
>>> df3 = df3.rolling(3,min_periods=1).sum()
>>> wt3 = wt.rolling(3,min_periods=1).sum()


>>> df3 = df3 / wt3


favorable  unfavorable     other
enddate
2012-10-25   0.495000     0.485000  0.025000
2012-10-26   0.516667     0.456667  0.030000
2012-10-27   0.515000     0.460000  0.027500
2012-10-28   0.496667     0.465000  0.041667
2012-10-29   0.484000     0.478000  0.042000
2012-10-30   0.488000     0.474000  0.042000
2012-10-31   0.530000     0.450000  0.020000
2012-11-01   0.500000     0.465000  0.035000
2012-11-02   0.490000     0.470000  0.040000
2012-11-03   0.490000     0.465000  0.045000
2012-11-04   0.500000     0.448333  0.035000
2012-11-05   0.501429     0.450000  0.032857
2012-11-06   0.503333     0.450000  0.028333
2012-11-07   0.510000     0.435000  0.010000

Note that the rolling mean for 10/27 is now 0.51500 (poll-weighted) rather than 52.1667 (day-weighted).

Also note that there have been changes to the APIs for resample and rolling as of version 0.18.0.

rolling (what's new in pandas 0.18.0)

resample (what's new in pandas 0.18.0)

In the meantime, a time-window capability was added. See this link.

In [1]: df = DataFrame({'B': range(5)})


In [2]: df.index = [Timestamp('20130101 09:00:00'),
...:             Timestamp('20130101 09:00:02'),
...:             Timestamp('20130101 09:00:03'),
...:             Timestamp('20130101 09:00:05'),
...:             Timestamp('20130101 09:00:06')]


In [3]: df
Out[3]:
B
2013-01-01 09:00:00  0
2013-01-01 09:00:02  1
2013-01-01 09:00:03  2
2013-01-01 09:00:05  3
2013-01-01 09:00:06  4


In [4]: df.rolling(2, min_periods=1).sum()
Out[4]:
B
2013-01-01 09:00:00  0.0
2013-01-01 09:00:02  1.0
2013-01-01 09:00:03  3.0
2013-01-01 09:00:05  5.0
2013-01-01 09:00:06  7.0


In [5]: df.rolling('2s', min_periods=1).sum()
Out[5]:
B
2013-01-01 09:00:00  0.0
2013-01-01 09:00:02  1.0
2013-01-01 09:00:03  3.0
2013-01-01 09:00:05  3.0
2013-01-01 09:00:06  7.0

To keep it basic, I used a loop and something like this to get you started (my index are datetimes):

import pandas as pd
import datetime as dt


#populate your dataframe: "df"
#...


df[df.index<(df.index[0]+dt.timedelta(hours=1))] #gives you a slice. you can then take .sum() .mean(), whatever

and then you can run functions on that slice. You can see how adding an iterator to make the start of the window something other than the first value in your dataframes index would then roll the window (you could use a > rule for the start as well for example).

Note, this may be less efficient for SUPER large data or very small increments as your slicing may become more strenuous (works for me well enough for hundreds of thousands of rows of data and several columns though for hourly windows across a few weeks)

Check that your index is really datetime, not str Can be helpful:

data.index = pd.to_datetime(data['Index']).values

visualize the rolling averages to see if it makes sense. I don't understand why sum was used when the rolling average was requested.

  df=pd.read_csv('poll.csv',parse_dates=['enddate'],dtype={'favorable':np.float,'unfavorable':np.float,'other':np.float})


df.set_index('enddate')
df=df.fillna(0)


fig, axs = plt.subplots(figsize=(5,10))
df.plot(x='enddate', ax=axs)
plt.show()




df.rolling(window=3,min_periods=3).mean().plot()
plt.show()
print("The larger the window coefficient the smoother the line will appear")
print('The min_periods is the minimum number of observations in the window required to have a value')


df.rolling(window=6,min_periods=3).mean().plot()
plt.show()