You somehow have to refer to the variable you want to print the name of. So it would look like:
print varname(something_else)
There is no such function, but if there were it would be kind of pointless. You have to type out something_else, so you can as well just type quotes to the left and right of it to print the name as a string:
In Python, there really isn't any such thing as a "variable". What Python really has are "names" which can have objects bound to them. It makes no difference to the object what names, if any, it might be bound to. It might be bound to dozens of different names, or none.
Consider this example:
foo = 1
bar = 1
baz = 1
Now, suppose you have the integer object with value 1, and you want to work backwards and find its name. What would you print? Three different names have that object bound to them, and all are equally valid.
In Python, a name is a way to access an object, so there is no way to work with names directly. There might be some clever way to hack the Python bytecodes or something to get the value of the name, but that is at best a parlor trick.
If you know you want print foo to print "foo", you might as well just execute print "foo" in the first place.
EDIT: I have changed the wording slightly to make this more clear. Also, here is an even better example:
foo = 1
bar = foo
baz = foo
In practice, Python reuses the same object for integers with common values like 0 or 1, so the first example should bind the same object to all three names. But this example is crystal clear: the same object is bound to foo, bar, and baz.
This shows that the variable name is present as a string in the globals() dictionary.
>>> globals().keys()[2]
'x'
In this case it happens to be the third key, but there's no reliable way to know where a given variable name will end up
>>> for k in globals().keys():
... if not k.startswith("_"):
... print k
...
x
>>>
You could filter out system variables like this, but you're still going to get all of your own items. Just running that code above created another variable "k" that changed the position of "x" in the dict.
But maybe this is a useful start for you. If you tell us what you want this capability for, more helpful information could possibly be given.
What are you trying to achieve? There is absolutely no reason to ever do what you describe, and there is likely a much better solution to the problem you're trying to solve..
The most obvious alternative to what you request is a dictionary. For example:
There is an usage scenario where you might need this. I'm not implying there are not better ways or achieving the same functionality.
This would be useful in order to 'dump' an arbitrary list of dictionaries in case of error, in debug modes and other similar situations.
What would be needed, is the reverse of the eval() function:
get_indentifier_name_missing_function()
which would take an identifier name ('variable','dictionary',etc) as an argument, and return a
string containing the identifier’s name.
Consider the following current state of affairs:
random_function(argument_data)
If one is passing an identifier name ('function','variable','dictionary',etc) argument_data to a random_function() (another identifier name), one actually passes an identifier (e.g.: <argument_data object at 0xb1ce10>) to another identifier (e.g.: <function random_function at 0xafff78>):
<function random_function at 0xafff78>(<argument_data object at 0xb1ce10>)
From my understanding, only the memory address is passed to the function:
<function at 0xafff78>(<object at 0xb1ce10>)
Therefore, one would need to pass a string as an argument to random_function() in order for that function to have the argument's identifier name:
random_function('argument_data')
Inside the random_function()
def random_function(first_argument):
, one would use the already supplied string 'argument_data' to:
serve as an 'identifier name' (to display, log, string split/concat, whatever)
feed the eval() function in order to get a reference to the actual identifier, and therefore, a reference to the real data:
print("Currently working on", first_argument)
some_internal_var = eval(first_argument)
print("here comes the data: " + str(some_internal_var))
Unfortunately, this doesn't work in all cases. It only works if the random_function() can resolve the 'argument_data' string to an actual identifier. I.e. If argument_data identifier name is available in the random_function()'s namespace.
This isn't always the case:
# main1.py
import some_module1
argument_data = 'my data'
some_module1.random_function('argument_data')
# some_module1.py
def random_function(first_argument):
print("Currently working on", first_argument)
some_internal_var = eval(first_argument)
print("here comes the data: " + str(some_internal_var))
######
Expected results would be:
Currently working on: argument_data
here comes the data: my data
Because argument_data identifier name is not available in the random_function()'s namespace, this would yield instead:
Currently working on argument_data
Traceback (most recent call last):
File "~/main1.py", line 6, in <module>
some_module1.random_function('argument_data')
File "~/some_module1.py", line 4, in random_function
some_internal_var = eval(first_argument)
File "<string>", line 1, in <module>
NameError: name 'argument_data' is not defined
Now, consider the hypotetical usage of a get_indentifier_name_missing_function() which would behave as described above.
Unfortunately, get_indentifier_name_missing_function() would not see the 'original' identifier names (some_dictionary_,some_other_dictionary_2,some_other_dictionary_n). It would only see the a_dictionary_object identifier name.
So, the reverse of the eval() function won't be that useful in this case.
Currently, one would need to do this:
# main2.py same as above, except:
for each_one_of_my_dictionaries_names in ( 'some_dictionary_1',
'some_other_dictionary_2',
'...',
'some_other_dictionary_n' ):
some_module2.some_function( { each_one_of_my_dictionaries_names :
eval(each_one_of_my_dictionaries_names) } )
# some_module2.py
def some_function(a_dictionary_name_object_container):
for _dictionary_name, _dictionary_object in a_dictionary_name_object_container.items():
for _key, _value in _dictionary_object.items():
print( str(_dictionary_name) +
" " +
str(_key) +
" = " +
str(_value) )
######
In conclusion:
Python passes only memory addresses as arguments to functions.
Strings representing the name of an identifier, can only be referenced back to the actual identifier by the eval() function if the name identifier is available in the current namespace.
A hypothetical reverse of the eval() function, would not be useful in cases where the identifier name is not 'seen' directly by the calling code. E.g. inside any called function.
Currently one needs to pass to a function:
the string representing the identifier name
the actual identifier (memory address)
This can be achieved by passing both the 'string' and eval('string') to the called function at the same time. I think this is the most 'general' way of solving this egg-chicken problem across arbitrary functions, modules, namespaces, without using corner-case solutions. The only downside is the use of the eval() function which may easily lead to unsecured code. Care must be taken to not feed the eval() function with just about anything, especially unfiltered external-input data.
I searched for this question because I wanted a Python program to print assignment statements for some of the variables in the program. For example, it might print "foo = 3, bar = 21, baz = 432". The print function would need the variable names in string form. I could have provided my code with the strings "foo","bar", and "baz", but that felt like repeating myself. After reading the previous answers, I developed the solution below.
The globals() function behaves like a dict with variable names (in the form of strings) as keys. I wanted to retrieve from globals() the key corresponding to the value of each variable. The method globals().items() returns a list of tuples; in each tuple the first item is the variable name (as a string) and the second is the variable value. My variablename() function searches through that list to find the variable name(s) that corresponds to the value of the variable whose name I need in string form.
The function itertools.ifilter() does the search by testing each tuple in the globals().items() list with the function lambda x: var is globals()[x[0]]. In that function x is the tuple being tested; x[0] is the variable name (as a string) and x[1] is the value. The lambda function tests whether the value of the tested variable is the same as the value of the variable passed to variablename(). In fact, by using the is operator, the lambda function tests whether the name of the tested variable is bound to the exact same object as the variable passed to variablename(). If so, the tuple passes the test and is returned by ifilter().
The itertools.ifilter() function actually returns an iterator which doesn't return any results until it is called properly. To get it called properly, I put it inside a list comprehension [tpl[0] for tpl ... globals().items())]. The list comprehension saves only the variable name tpl[0], ignoring the variable value. The list that is created contains one or more names (as strings) that are bound to the value of the variable passed to variablename().
In the uses of variablename() shown below, the desired string is returned as an element in a list. In many cases, it will be the only item in the list. If another variable name is assigned the same value, however, the list will be longer.
>>> def variablename(var):
... import itertools
... return [tpl[0] for tpl in
... itertools.ifilter(lambda x: var is x[1], globals().items())]
...
>>> var = {}
>>> variablename(var)
['var']
>>> something_else = 3
>>> variablename(something_else)
['something_else']
>>> yet_another = 3
>>> variablename(something_else)
['yet_another', 'something_else']
I think this is a cool solution and I suppose the best you can get. But do you see any way to handle the ambigious results, your function may return?
As "is" operator behaves unexpectedly with integers shows, low integers and strings of the same value get cached by python so that your variablename-function might priovide ambigous results with a high probability.
In my case, I would like to create a decorator, that adds a new variable to a class by the varialbename i pass it:
But if your method returns ambigous results, how can I know the name of the variable I added?
var any_var="myvarcontent"
var myvar="myvarcontent"
@inject(myvar)
class myclasss():
def myclass_method(self):
print self.__myvar #I can not be sure, that this variable will be set...
Maybe if I will also check the local list I could at least remove the "dependency"-Variable from the list, but this will not be a reliable result.
Here is a succinct variation that lets you specify any directory.
The issue with using directories to find anything is that multiple variables can have the same value. So this code returns a list of possible variables.
def varname( var, dir=locals()):
return [ key for key, val in dir.items() if id( val) == id( var)]
It's not very Pythonesque but I was curious and found this solution. You need to duplicate the globals dictionary since its size will change as soon as you define a new variable.
def var_to_name(var):
# noinspection PyTypeChecker
dict_vars = dict(globals().items())
var_string = None
for name in dict_vars.keys():
if dict_vars[name] is var:
var_string = name
break
return var_string
if __name__ == "__main__":
test = 3
print(f"test = {test}")
print(f"variable name: {var_to_name(test)}")
I'd like to point out a use case for this that is not an anti-pattern, and there is no better way to do it.
This seems to be a missing feature in python.
There are a number of functions, like patch.object, that take the name of a method or property to be patched or accessed.
Consider this:
patch.object(obj, "method_name", new_reg)
This can potentially start "false succeeding" when you change the name of a method. IE: you can ship a bug, you thought you were testing.... simply because of a bad method name refactor.
Now consider: varname. This could be an efficient, built-in function. But for now it can work by iterating an object or the caller's frame:
Now your call can be:
patch.member(obj, obj.method_name, new_reg)
And the patch function can call:
varname(var, obj=obj)
This would: assert that the var is bound to the obj and return the name of the member. Or if the obj is not specified, use the callers stack frame to derive it, etc.
Could be made an efficient built in at some point, but here's a definition that works. I deliberately didn't support builtins, easy to add tho:
Feel free to stick this in a package called varname.py, and use it in your patch.object calls:
import inspect
def _varname_dict(var, dct):
key_name = None
for key, val in dct.items():
if val is var:
if key_name is not None:
raise NotImplementedError("Duplicate names not supported %s, %s" % (key_name, key))
key_name = key
return key_name
def _varname_obj(var, obj):
key_name = None
for key in dir(obj):
val = getattr(obj, key)
equal = val is var
if equal:
if key_name is not None:
raise NotImplementedError("Duplicate names not supported %s, %s" % (key_name, key))
key_name = key
return key_name
def varname(var, obj=None):
if obj is None:
if hasattr(var, "__self__"):
return var.__name__
caller_frame = inspect.currentframe().f_back
try:
ret = _varname_dict(var, caller_frame.f_locals)
except NameError:
ret = _varname_dict(var, caller_frame.f_globals)
else:
ret = _varname_obj(var, obj)
if ret is None:
raise NameError("Name not found. (Note: builtins not supported)")
return ret
Thanks @restrepo, this was exactly what I needed to create a standard save_df_to_file() function. For this, I made some small changes to your tostr() function. Hope this will help someone else:
it is possible to a limited extent. the answer is similar to the solution by @tamtam .
The given example assumes the following assumptions -
You are searching for a variable by its value
The variable has a distinct value
The value is in the global namespace
Example:
testVar = "unique value"
varNameAsString = [k for k,v in globals().items() if v == "unique value"]
#
# the variable "varNameAsString" will contain all the variable name that matches
# the value "unique value"
# for this example, it will be a list of a single entry "testVar"
#
print(varNameAsString)
Output : ['testVar']
You can extend this example for any other variable/data type
The original question is pretty old, but I found an almost solution with Python 3. (I say almost because I think you can get close to a solution but I do not believe there is a solution concrete enough to satisfy the exact request).
First, you might want to consider the following:
objects are a core concept in Python, and they may be assigned a variable, but the variable itself is a bound name (think pointer or reference) not the object itself
var is just a variable name bound to an object and that object could have more than one reference (in your example it does not seem to)
in this case, var appears to be in the global namespace so you can use the global builtin conveniently named global
different name references to the same object will all share the same id which can be checked by running the id builtinid like so: id(var)
This function grabs the global variables and filters out the ones matching the content of your variable.
def get_bound_names(target_variable):
'''Returns a list of bound object names.'''
return [k for k, v in globals().items() if v is target_variable]
The real challenge here is that you are not guaranteed to get back the variable name by itself. It will be a list, but that list will contain the variable name you are looking for. If your target variable (bound to an object) is really the only bound name, you could access it this way:
Possible for Python >= 3.8 (with f'{var=}' string )
Not sure if this could be used in production code, but in Python 3.8(and up) you can use f' string debugging specifier. Add = at the end of an expression, and it will print both the expression and its value:
Explanation: when you put '=' after your var in f'string, it returns a string with variable name, '=' and its value. Split it with .split('=') and get a List of 2 strings, [0] - your_variable_name, and [1] - actual object of variable.
Pick up [0] element of the list if you need variable name only.
my_salary_variable = 5000
param_list = f'{my_salary_variable=}'.split('=')
print(param_list[0])
Output:
my_salary_variable
or, in one line
my_salary_variable = 5000
print(f'{my_salary_variable=}'.split('=')[0])
Output:
my_salary_variable