You can use a \r (carriage return) to return the cursor to the beginning of the line:
printf("hello");
printf("\rbye");
This will print bye on the same line. It won't erase the existing characters though, and because bye is shorter than hello, you will end up with byelo. To erase it you can make your new print longer to overwrite the extra characters:
printf("hello");
printf("\rbye ");
Or, first erase it with a few spaces, then print your new string:
printf("hello");
printf("\r ");
printf("\rbye");
That will print hello, then go to the beginning of the line and overwrite it with spaces, then go back to the beginning again and print bye.
Usually when you have a '\r' at the end of the string, only carriage return is printed without any newline. If you have the following:
printf("fooooo\r");
printf("bar");
the output will be:
barooo
One thing I can suggest (maybe a workaround) is to have a NULL terminated fixed size string that is initialized to all space characters, ending in a '\r' (every time before printing), and then use strcpy to copy your string into it (without the newline), so every subsequent print will overwrite the previous string. Something like this:
char str[MAX_LENGTH];
// init str to all spaces, NULL terminated with character as '\r'
strcpy(str, my_string); // copy my_string into str
str[strlen(my_string)] = ' '; // erase null termination char
str[MAX_LENGTH - 1] = '\r';
printf(str);
You can do error checking so that my_string is always atleast one less in length than str, but you get the basic idea.
#include <stdio.h>
int main ()
{
//write some input
fputs("hello\n",stdout);
//wait one second to change line above
sleep(1);
//remove line
fputs("\033[A\033[2K",stdout);
rewind(stdout);
//write new line
fputs("bye\n",stdout);
return 0;
}
\33[2K erases the entire line your cursor is currently on
\033[A moves your cursor up one line, but in the same column i.e. not to the start of the line
\r brings your cursor to the beginning of the line (r is for carriage return N.B. carriage returns do not include a newline so cursor remains on the same line) but does not erase anything
In xterm specifically, I tried the replies mentioned above and the only way I found to erase the line and start again at the beginning is the sequence (from the comment above posted by @Stephan202 as well as @vlp and @mantal) \33[2K\r
On an implementation note, to get it to work properly for example in a countdown scenario since I wasn't using a new line character '\n'
at the end of each fprintf(), so I had to fflush() the stream each time (to give you some context, I started xterm using a fork on a linux machine without redirecting stdout, I was just writing to the buffered FILE pointer fdfile with a non-blocking file descriptor I had sitting on the pseudo terminal address which in my case was /dev/pts/21):
fprintf(fdfile, "\33[2K\rT minus %d seconds...", i);
fflush(fdfile);
Note that I used both the \33[2K sequence to erase the line followed by the \r carriage return sequence to reposition the cursor at the beginning of the line. I had to fflush() after each fprintf() because I don't have a new line character at the end '\n'. The same result without needing fflush() would require the additional sequence to go up a line:
fprintf(fdfile, "\033[A\33[2K\rT minus %d seconds...\n", i);
Note that if you have something on the line immediately above the line you want to write on, it will get over-written with the first fprintf(). You would have to leave an extra line above to allow for the first movement up one line:
i = 3;
fprintf(fdfile, "\nText to keep\n");
fprintf(fdfile, "Text to erase****************************\n");
while(i > 0) { // 3 second countdown
fprintf(fdfile, "\033[A\33[2KT\rT minus %d seconds...\n", i);
i--;
sleep(1);
}
there is a simple trick you can work here but it need preparation before you print, you have to put what ever you wants to print in a variable and then print so you will know the length to remove the string.here is an example.
#include <iostream>
#include <string> //actually this thing is not nessasory in tdm-gcc
using namespace std;
int main(){
//create string variable
string str="Starting count";
//loop for printing numbers
for(int i =0;i<=50000;i++){
//get previous string length and clear it from screen with backspace charactor
cout << string(str.length(),'\b');
//create string line
str="Starting count " +to_string(i);
//print the new line in same spot
cout <<str ;
}
}
Just found this old thread, looking for some kind of escape sequence to blank the actual line.
It's quite funny no one came to the idea (or I have missed it) that printf returns the number of characters written. So just print '\r' + as many blank characters as printf returned and you will exactly blank the previuosly written text.
int BlankBytes(int Bytes)
{
char strBlankStr[16];
sprintf(strBlankStr, "\r%%%is\r", Bytes);
printf(strBlankStr,"");
return 0;
}
int main(void)
{
int iBytesWritten;
double lfSomeDouble = 150.0;
iBytesWritten = printf("test text %lf", lfSomeDouble);
BlankBytes(iBytesWritten);
return 0;
}
As I cant use VT100, it seems I have to stick with that solution
under windows 10 one can use VT100 style by activating the VT100 mode in the current console to use escape sequences as follow :
#include <windows.h>
#include <iostream>
#define ENABLE_VIRTUAL_TERMINAL_PROCESSING 0x0004
#define DISABLE_NEWLINE_AUTO_RETURN 0x0008
int main(){
// enabling VT100 style in current console
DWORD l_mode;
HANDLE hStdout = GetStdHandle(STD_OUTPUT_HANDLE);
GetConsoleMode(hStdout,&l_mode)
SetConsoleMode( hStdout, l_mode |
ENABLE_VIRTUAL_TERMINAL_PROCESSING |
DISABLE_NEWLINE_AUTO_RETURN );
// create a waiting loop with changing text every seconds
while(true) {
// erase current line and go to line begining
std::cout << "\x1B[2K\r";
std::cout << "wait a second .";
Sleep(1);
std::cout << "\x1B[2K\r";
std::cout << "wait a second ..";
Sleep(1);
std::cout << "\x1B[2K\r";
std::cout << "wait a second ...";
Sleep(1);
std::cout << "\x1B[2K\r";
std::cout << "wait a second ....";
}
}
A character that in the output stream indicates that printing should
start at the beginning of the same physical line in which the
carriage-return occurred. It is the character designated by '\r' in
the C language. It is unspecified whether this character is the exact
sequence transmitted to an output device by the system to accomplish
the movement to the beginning of the line.
It does not state whether carriage return is supposed to erase (=> populate with NUL characters) the entire line or not. My guess is that it is NOT supposed to erase.
However, on my Linux machine (tried on both x86_64 and ARM32), what I observed is that the carriage return character moved the cursor to the beginning of the current line and also populated the line with '\0' characters (NUL characters). In order to notice those NUL characters, you might have to call the write system call directly from your code instead of calling via glibc printf.
Let's take the following code snippet as an example:
printf("hello");
printf("\rbye");
Building and running this on beaglebone black (32-bit ARM) bash terminal: