In [1]: df = pd.DataFrame([[1,2],[3,4]], index=['A','B'])
In [2]: df
Out[2]:
0 1
A 1 2
B 3 4
In [3]: L = ['A']
In [4]: df.select(lambda x: x in L)
Out[4]:
0 1
A 1 2
You have many options. Collating some of the answers above and the accepted answer from this post you can do:
1. df[-df["column"].isin(["value"])]
2. df[~df["column"].isin(["value"])]
3. df[df["column"].isin(["value"]) == False]
4. df[np.logical_not(df["column"].isin(["value"]))]
Note: for option 4 for you'll need to import numpy as np
Update: You can also use the .query method for this too. This allows for method chaining:
5. df.query("column not in @values").
where values is a list of the values that you don't want to include.