我想找到所有的值在熊猫数据帧包含空白(任何任意数量),并将这些值替换为nan。
有什么想法可以改进吗?
基本上我想把这个
A B C
2000-01-01 -0.532681 foo 0
2000-01-02 1.490752 bar 1
2000-01-03 -1.387326 foo 2
2000-01-04 0.814772 baz
2000-01-05 -0.222552 4
2000-01-06 -1.176781 qux
到这个:
A B C
2000-01-01 -0.532681 foo 0
2000-01-02 1.490752 bar 1
2000-01-03 -1.387326 foo 2
2000-01-04 0.814772 baz NaN
2000-01-05 -0.222552 NaN 4
2000-01-06 -1.176781 qux NaN
我已经设法用下面的代码做到这一点,但男人是丑陋的。它不是Pythonic的,而且我确信它也不是最有效的使用pandas的方法。我循环遍历每一列,并对通过应用一个函数生成的列掩码进行布尔替换,该函数对每个值进行正则表达式搜索,匹配空格。
for i in df.columns:
df[i][df[i].apply(lambda i: True if re.search('^\s*$', str(i)) else False)]=None
它可以通过只遍历可能包含空字符串的字段来进行优化:
if df[i].dtype == np.dtype('object')
但这并没有太大的改善
最后,这段代码将目标字符串设置为None,这适用于Pandas的函数,如fillna()
,但如果我可以实际直接插入NaN
而不是None
,则会更好。