如何在c#中获得具有最佳性能的线程安全计数器?
这很简单:
public static long GetNextValue() { long result; lock (LOCK) { result = COUNTER++; } return result; }
但是有没有更快的选择呢?
尝试使用联锁。增量
这样会更简单:
return Interlocked.Increment(ref COUNTER);
MSDN互锁。增加< / >
我建议你在系统中使用。net内置的联锁增量。线程库。
下面的代码将通过引用增加一个长变量,并且是完全线程安全的:
Interlocked.Increment(ref myNum);
来源:http://msdn.microsoft.com/en-us/library/dd78zt0c.aspx
正如其他人推荐的那样,Interlocked.Increment将比lock()具有更好的性能。只要看一下IL和Assembly,你就会看到Increment变成了一个“总线锁”。语句及其变量直接递增(x86)或“加”;(x64)。
Interlocked.Increment
lock()
Increment
这辆“巴士锁”;语句锁定总线,以防止另一个CPU在调用CPU执行操作时访问总线。现在,看一下c# lock()语句的IL。在这里你会看到为了开始或结束一个节而调用Monitor。
Monitor
换句话说,. net lock()语句比. net Interlocked.Increment语句做的多得多。
所以,如果你想做的只是增加一个变量,Interlock.Increment会更快。回顾所有Interlocked方法,以查看可用的各种原子操作,并找到适合您需要的操作。当你想做更复杂的事情,比如多个相互关联的递增/递减,或者序列化对比整数更复杂的资源的访问时,可以使用lock()。
Interlock.Increment
如上所述,使用Interlocked.Increment
来自MS的代码示例:
下面的示例确定需要多少个范围从0到1000的随机数才能生成具有中点值的1000个随机数。为了跟踪中点值的数量,将变量midpointCount设置为0,并在随机数生成器每次返回中点值时递增,直到达到10,000。因为三个线程生成随机数,所以调用Increment(Int32)方法以确保多个线程不会并发更新midpointCount。请注意,锁还用于保护随机数生成器,并且使用CountdownEvent对象确保Main方法不会在三个线程之前完成执行。
using System; using System.Threading; public class Example { const int LOWERBOUND = 0; const int UPPERBOUND = 1001; static Object lockObj = new Object(); static Random rnd = new Random(); static CountdownEvent cte; static int totalCount = 0; static int totalMidpoint = 0; static int midpointCount = 0; public static void Main() { cte = new CountdownEvent(1); // Start three threads. for (int ctr = 0; ctr <= 2; ctr++) { cte.AddCount(); Thread th = new Thread(GenerateNumbers); th.Name = "Thread" + ctr.ToString(); th.Start(); } cte.Signal(); cte.Wait(); Console.WriteLine(); Console.WriteLine("Total midpoint values: {0,10:N0} ({1:P3})", totalMidpoint, totalMidpoint/((double)totalCount)); Console.WriteLine("Total number of values: {0,10:N0}", totalCount); } private static void GenerateNumbers() { int midpoint = (UPPERBOUND - LOWERBOUND) / 2; int value = 0; int total = 0; int midpt = 0; do { lock (lockObj) { value = rnd.Next(LOWERBOUND, UPPERBOUND); } if (value == midpoint) { Interlocked.Increment(ref midpointCount); midpt++; } total++; } while (midpointCount < 10000); Interlocked.Add(ref totalCount, total); Interlocked.Add(ref totalMidpoint, midpt); string s = String.Format("Thread {0}:\n", Thread.CurrentThread.Name) + String.Format(" Random Numbers: {0:N0}\n", total) + String.Format(" Midpoint values: {0:N0} ({1:P3})", midpt, ((double) midpt)/total); Console.WriteLine(s); cte.Signal(); } } // The example displays output like the following: // Thread Thread2: // Random Numbers: 2,776,674 // Midpoint values: 2,773 (0.100 %) // Thread Thread1: // Random Numbers: 4,876,100 // Midpoint values: 4,873 (0.100 %) // Thread Thread0: // Random Numbers: 2,312,310 // Midpoint values: 2,354 (0.102 %) // // Total midpoint values: 10,000 (0.100 %) // Total number of values: 9,965,084
下面的示例与前面的示例类似,只是它使用Task类而不是线程过程来生成50,000个随机中点整数。在本例中,lambda表达式替换了GenerateNumbers线程过程和Task调用。方法消除了对CountdownEvent对象的需要。
using System; using System.Collections.Generic; using System.Threading; using System.Threading.Tasks; public class Example { const int LOWERBOUND = 0; const int UPPERBOUND = 1001; static Object lockObj = new Object(); static Random rnd = new Random(); static int totalCount = 0; static int totalMidpoint = 0; static int midpointCount = 0; public static void Main() { List<Task> tasks = new List<Task>(); // Start three tasks. for (int ctr = 0; ctr <= 2; ctr++) tasks.Add(Task.Run( () => { int midpoint = (UPPERBOUND - LOWERBOUND) / 2; int value = 0; int total = 0; int midpt = 0; do { lock (lockObj) { value = rnd.Next(LOWERBOUND, UPPERBOUND); } if (value == midpoint) { Interlocked.Increment(ref midpointCount); midpt++; } total++; } while (midpointCount < 50000); Interlocked.Add(ref totalCount, total); Interlocked.Add(ref totalMidpoint, midpt); string s = String.Format("Task {0}:\n", Task.CurrentId) + String.Format(" Random Numbers: {0:N0}\n", total) + String.Format(" Midpoint values: {0:N0} ({1:P3})", midpt, ((double) midpt)/total); Console.WriteLine(s); } )); Task.WaitAll(tasks.ToArray()); Console.WriteLine(); Console.WriteLine("Total midpoint values: {0,10:N0} ({1:P3})", totalMidpoint, totalMidpoint/((double)totalCount)); Console.WriteLine("Total number of values: {0,10:N0}", totalCount); } } // The example displays output like the following: // Task 3: // Random Numbers: 10,855,250 // Midpoint values: 10,823 (0.100 %) // Task 1: // Random Numbers: 15,243,703 // Midpoint values: 15,110 (0.099 %) // Task 2: // Random Numbers: 24,107,425 // Midpoint values: 24,067 (0.100 %) // // Total midpoint values: 50,000 (0.100 %) // Total number of values: 50,206,378
https://learn.microsoft.com/en-us/dotnet/api/system.threading.interlocked.increment?view=netcore-3.0