public static IEnumerable<T> Shuffle<T>(this IEnumerable<T> source, Random rng)
{
T[] elements = source.ToArray();
// Note i > 0 to avoid final pointless iteration
for (int i = elements.Length-1; i > 0; i--)
{
// Swap element "i" with a random earlier element it (or itself)
int swapIndex = rng.Next(i + 1);
T tmp = elements[i];
elements[i] = elements[swapIndex];
elements[swapIndex] = tmp;
}
// Lazily yield (avoiding aliasing issues etc)
foreach (T element in elements)
{
yield return element;
}
}
编辑: 下面关于性能的评论提醒了我,我们可以在重组元素时返回这些元素:
public static IEnumerable<T> Shuffle<T>(this IEnumerable<T> source, Random rng)
{
T[] elements = source.ToArray();
for (int i = elements.Length - 1; i >= 0; i--)
{
// Swap element "i" with a random earlier element it (or itself)
// ... except we don't really need to swap it fully, as we can
// return it immediately, and afterwards it's irrelevant.
int swapIndex = rng.Next(i + 1);
yield return elements[swapIndex];
elements[swapIndex] = elements[i];
}
}
static public class FisherYates
{
// Based on Java code from wikipedia:
// http://en.wikipedia.org/wiki/Fisher-Yates_shuffle
static public void Shuffle(int[] deck)
{
Random r = new Random();
for (int n = deck.Length - 1; n > 0; --n)
{
int k = r.Next(n+1);
int temp = deck[n];
deck[n] = deck[k];
deck[k] = temp;
}
}
}
这个算法在游戏中经常使用,前三个项目被选中,其他的项目只有在以后才需要。我的建议是 yield的数字尽快交换。这将降低启动成本,同时将迭代成本保持在 O (1)(基本上每次迭代5个操作)。总成本将保持不变,但洗牌本身会更快。在被称为 collection.Shuffle().ToArray()的情况下,从理论上讲它不会有什么不同,但是在前面提到的用例中,它会加速启动。此外,这将使算法在您只需要几个唯一项的情况下非常有用。例如,如果您需要从一副52的牌中抽出三张牌,您可以调用 deck.Shuffle().Take(3),只会发生三次交换(尽管必须首先复制整个数组)。
public static IEnumerable<T> Shuffle<T>(this IEnumerable<T> source, Random rng)
{
T[] elements = source.ToArray();
// Note i > 0 to avoid final pointless iteration
for (int i = elements.Length - 1; i > 0; i--)
{
// Swap element "i" with a random earlier element it (or itself)
int swapIndex = rng.Next(i + 1);
yield return elements[swapIndex];
elements[swapIndex] = elements[i];
// we don't actually perform the swap, we can forget about the
// swapped element because we already returned it.
}
// there is one item remaining that was not returned - we return it now
yield return elements[0];
}
using System;
using System.Runtime;
using System.Diagnostics;
using System.IO;
using System.Collections.Generic;
using System.Collections;
using System.Linq;
using System.Threading;
namespace Algorithm
{
class Program
{
public static void Main(string[] args)
{
try {
int i = 0;
int limit = 10;
var result = GetTestRandomSort(limit);
foreach (var element in result) {
Console.WriteLine();
Console.WriteLine("time {0}: {1} ms", ++i, element);
}
} catch (Exception e) {
Console.WriteLine(e.Message);
} finally {
Console.Write("Press any key to continue . . . ");
Console.ReadKey(true);
}
}
public static IEnumerable<double> GetTestRandomSort(int limit)
{
for (int i = 0; i < 5; i++) {
string path = null, temp = null;
Stopwatch st = null;
StreamReader sr = null;
int? count = null;
List<string> list = null;
Random r = null;
GC.Collect();
GC.WaitForPendingFinalizers();
Thread.Sleep(5000);
st = Stopwatch.StartNew();
#region Import Input Data
path = Environment.CurrentDirectory + "\\data";
list = new List<string>();
sr = new StreamReader(path);
count = 0;
while (count < limit && (temp = sr.ReadLine()) != null) {
// Console.WriteLine(temp);
list.Add(temp);
count++;
}
sr.Close();
#endregion
// Console.WriteLine("--------------Random--------------");
// #region Sort by Random with OrderBy(random.Next())
// r = new Random();
// list = list.OrderBy(l => r.Next()).ToList();
// #endregion
// #region Sort by Random with OrderBy(Guid)
// list = list.OrderBy(l => Guid.NewGuid()).ToList();
// #endregion
// #region Sort by Random with Parallel and OrderBy(random.Next())
// r = new Random();
// list = list.AsParallel().OrderBy(l => r.Next()).ToList();
// #endregion
// #region Sort by Random with Parallel OrderBy(Guid)
// list = list.AsParallel().OrderBy(l => Guid.NewGuid()).ToList();
// #endregion
// #region Sort by Random with User-Defined Shuffle Method
// r = new Random();
// list = list.Shuffle(r).ToList();
// #endregion
// #region Sort by Random with Parallel User-Defined Shuffle Method
// r = new Random();
// list = list.AsParallel().Shuffle(r).ToList();
// #endregion
// Result
//
st.Stop();
yield return st.Elapsed.TotalMilliseconds;
foreach (var element in list) {
Console.WriteLine(element);
}
}
}
}
}
class ShuffleList<T> : List<T>
{
public void Shuffle()
{
Random random = new Random();
for (int count = Count; count > 0; count--)
{
int i = random.Next(count);
Add(this[i]);
RemoveAt(i);
}
}
}
然后,像这样使用它:
ShuffleList<int> list = new ShuffleList<int>();
// Add elements to your list.
list.Shuffle();
我认为 Jon Skeet 的回答完全令人满意,但是我客户的机器扫描仪会报告任何 Random的实例是一个安全漏洞。所以我把它换成了 System.Security.Cryptography.RNGCryptoServiceProvider。作为额外的好处,它修复了前面提到的线程安全问题。另一方面,RNGCryptoServiceProvider的测量速度比使用 Random慢300倍。
用法:
using (var rng = new RNGCryptoServiceProvider())
{
var data = new byte[4];
yourCollection = yourCollection.Shuffle(rng, data);
}
方法:
/// <summary>
/// Shuffles the elements of a sequence randomly.
/// </summary>
/// <param name="source">A sequence of values to shuffle.</param>
/// <param name="rng">An instance of a random number generator.</param>
/// <param name="data">A placeholder to generate random bytes into.</param>
/// <returns>A sequence whose elements are shuffled randomly.</returns>
public static IEnumerable<T> Shuffle<T>(this IEnumerable<T> source, RNGCryptoServiceProvider rng, byte[] data)
{
var elements = source.ToArray();
for (int i = elements.Length - 1; i >= 0; i--)
{
rng.GetBytes(data);
var swapIndex = BitConverter.ToUInt32(data, 0) % (i + 1);
yield return elements[swapIndex];
elements[swapIndex] = elements[i];
}
}