线性回归和分组

我想用线性回归函数在 R 中做一个。我的数据是一个年度时间序列,其中一个字段为年(22年) ,另一个字段为州(50个州)。我想拟合每个状态的回归,这样最后我有一个 lm 响应的向量。我可以想象为每个状态执行 for 循环,然后在循环中执行回归,并将每个回归的结果添加到一个向量中。然而,这似乎不太像 R 调。在 SAS 中我会做一个‘ by’语句,在 SQL 中我会做一个‘ group by’。做这件事的 R 方法是什么?

118246 次浏览
## make fake data
ngroups <- 2
group <- 1:ngroups
nobs <- 100
dta <- data.frame(group=rep(group,each=nobs),y=rnorm(nobs*ngroups),x=runif(nobs*ngroups))
head(dta)
#--------------------
group          y         x
1     1  0.6482007 0.5429575
2     1 -0.4637118 0.7052843
3     1 -0.5129840 0.7312955
4     1 -0.6612649 0.9028034
5     1 -0.5197448 0.1661308
6     1  0.4240346 0.8944253
#------------
## function to extract the results of one model
foo <- function(z) {
## coef and se in a data frame
mr <- data.frame(coef(summary(lm(y~x,data=z))))
## put row names (predictors/indep variables)
mr$predictor <- rownames(mr)
mr
}
## see that it works
foo(subset(dta,group==1))
#=========
Estimate Std..Error   t.value  Pr...t..   predictor
(Intercept)  0.2176477  0.1919140  1.134090 0.2595235 (Intercept)
x           -0.3669890  0.3321875 -1.104765 0.2719666           x
#----------
## one option: use command by
res <- by(dta,dta$group,foo)
res
#=========
dta$group: 1
Estimate Std..Error   t.value  Pr...t..   predictor
(Intercept)  0.2176477  0.1919140  1.134090 0.2595235 (Intercept)
x           -0.3669890  0.3321875 -1.104765 0.2719666           x
------------------------------------------------------------
dta$group: 2
Estimate Std..Error    t.value  Pr...t..   predictor
(Intercept) -0.04039422  0.1682335 -0.2401081 0.8107480 (Intercept)
x            0.06286456  0.3020321  0.2081387 0.8355526           x


## using package plyr is better
library(plyr)
res <- ddply(dta,"group",foo)
res
#----------
group    Estimate Std..Error    t.value  Pr...t..   predictor
1     1  0.21764767  0.1919140  1.1340897 0.2595235 (Intercept)
2     1 -0.36698898  0.3321875 -1.1047647 0.2719666           x
3     2 -0.04039422  0.1682335 -0.2401081 0.8107480 (Intercept)
4     2  0.06286456  0.3020321  0.2081387 0.8355526           x

下面是使用 lme4包的一种方法。

 library(lme4)
d <- data.frame(state=rep(c('NY', 'CA'), c(10, 10)),
year=rep(1:10, 2),
response=c(rnorm(10), rnorm(10)))


xyplot(response ~ year, groups=state, data=d, type='l')


fits <- lmList(response ~ year | state, data=d)
fits
#------------
Call: lmList(formula = response ~ year | state, data = d)
Coefficients:
(Intercept)        year
CA -1.34420990  0.17139963
NY  0.00196176 -0.01852429


Degrees of freedom: 20 total; 16 residual
Residual standard error: 0.8201316

我认为混合线性模型是处理这类数据的较好方法。下面的代码给出了在固定效应下的总体趋势。随机效应表明了每个国家的趋势如何不同于全球趋势。相关结构考虑了时间自相关性。看看 Pinheiro & Bates (S 和 S-Plus 中的混合效应模型)。

library(nlme)
lme(response ~ year, random = ~year|state, correlation = corAR1(~year))

下面是使用 皮尔软件包的一种方法:

d <- data.frame(
state = rep(c('NY', 'CA'), 10),
year = rep(1:10, 2),
response= rnorm(20)
)


library(plyr)
# Break up d by state, then fit the specified model to each piece and
# return a list
models <- dlply(d, "state", function(df)
lm(response ~ year, data = df))


# Apply coef to each model and return a data frame
ldply(models, coef)


# Print the summary of each model
l_ply(models, summary, .print = TRUE)

上面的 lm()函数是一个简单的例子。顺便说一下,我想您的数据库中的列如下所示:

年度状态变量。.

在我看来,你可以使用以下代码:

require(base)
library(base)
attach(data) # data = your data base
#state is your label for the states column
modell<-by(data, data$state, function(data) lm(y~I(1/var1)+I(1/var2)))
summary(modell)

使用 data.table的一个很好的解决方案被@Zach 在 CrossValized 中发布。 我只想补充一点,迭代得到回归系数 r ^ 2是可能的:

## make fake data
library(data.table)
set.seed(1)
dat <- data.table(x=runif(100), y=runif(100), grp=rep(1:2,50))


##calculate the regression coefficient r^2
dat[,summary(lm(y~x))$r.squared,by=grp]
grp         V1
1:   1 0.01465726
2:   2 0.02256595

以及 summary(lm)的所有其他产出:

dat[,list(r2=summary(lm(y~x))$r.squared , f=summary(lm(y~x))$fstatistic[1] ),by=grp]
grp         r2        f
1:   1 0.01465726 0.714014
2:   2 0.02256595 1.108173

自2009年以来,dplyr已经发布,它实际上提供了一种非常好的方式来进行这种分组,非常类似于 SAS 所做的。

library(dplyr)


d <- data.frame(state=rep(c('NY', 'CA'), c(10, 10)),
year=rep(1:10, 2),
response=c(rnorm(10), rnorm(10)))
fitted_models = d %>% group_by(state) %>% do(model = lm(response ~ year, data = .))
# Source: local data frame [2 x 2]
# Groups: <by row>
#
#    state   model
#   (fctr)   (chr)
# 1     CA <S3:lm>
# 2     NY <S3:lm>
fitted_models$model
# [[1]]
#
# Call:
# lm(formula = response ~ year, data = .)
#
# Coefficients:
# (Intercept)         year
#    -0.06354      0.02677
#
#
# [[2]]
#
# Call:
# lm(formula = response ~ year, data = .)
#
# Coefficients:
# (Intercept)         year
#    -0.35136      0.09385

要检索系数和 Rsquared/p.value,可以使用 broom包:

三个 S3泛型: 整洁,它总结了一个模型的 回归系数等统计结果; 这将向原始数据添加列,例如 预测,残差和聚类分配; 提供模型级统计信息的一行摘要。

library(broom)
fitted_models %>% tidy(model)
# Source: local data frame [4 x 6]
# Groups: state [2]
#
#    state        term    estimate  std.error  statistic   p.value
#   (fctr)       (chr)       (dbl)      (dbl)      (dbl)     (dbl)
# 1     CA (Intercept) -0.06354035 0.83863054 -0.0757668 0.9414651
# 2     CA        year  0.02677048 0.13515755  0.1980687 0.8479318
# 3     NY (Intercept) -0.35135766 0.60100314 -0.5846187 0.5749166
# 4     NY        year  0.09385309 0.09686043  0.9689519 0.3609470
fitted_models %>% glance(model)
# Source: local data frame [2 x 12]
# Groups: state [2]
#
#    state   r.squared adj.r.squared     sigma statistic   p.value    df
#   (fctr)       (dbl)         (dbl)     (dbl)     (dbl)     (dbl) (int)
# 1     CA 0.004879969  -0.119510035 1.2276294 0.0392312 0.8479318     2
# 2     NY 0.105032068  -0.006838924 0.8797785 0.9388678 0.3609470     2
# Variables not shown: logLik (dbl), AIC (dbl), BIC (dbl), deviance (dbl),
#   df.residual (int)
fitted_models %>% augment(model)
# Source: local data frame [20 x 10]
# Groups: state [2]
#
#     state   response  year      .fitted   .se.fit     .resid      .hat
#    (fctr)      (dbl) (int)        (dbl)     (dbl)      (dbl)     (dbl)
# 1      CA  0.4547765     1 -0.036769875 0.7215439  0.4915464 0.3454545
# 2      CA  0.1217003     2 -0.009999399 0.6119518  0.1316997 0.2484848
# 3      CA -0.6153836     3  0.016771076 0.5146646 -0.6321546 0.1757576
# 4      CA -0.9978060     4  0.043541551 0.4379605 -1.0413476 0.1272727
# 5      CA  2.1385614     5  0.070312027 0.3940486  2.0682494 0.1030303
# 6      CA -0.3924598     6  0.097082502 0.3940486 -0.4895423 0.1030303
# 7      CA -0.5918738     7  0.123852977 0.4379605 -0.7157268 0.1272727
# 8      CA  0.4671346     8  0.150623453 0.5146646  0.3165112 0.1757576
# 9      CA -1.4958726     9  0.177393928 0.6119518 -1.6732666 0.2484848
# 10     CA  1.7481956    10  0.204164404 0.7215439  1.5440312 0.3454545
# 11     NY -0.6285230     1 -0.257504572 0.5170932 -0.3710185 0.3454545
# 12     NY  1.0566099     2 -0.163651479 0.4385542  1.2202614 0.2484848
# 13     NY -0.5274693     3 -0.069798386 0.3688335 -0.4576709 0.1757576
# 14     NY  0.6097983     4  0.024054706 0.3138637  0.5857436 0.1272727
# 15     NY -1.5511940     5  0.117907799 0.2823942 -1.6691018 0.1030303
# 16     NY  0.7440243     6  0.211760892 0.2823942  0.5322634 0.1030303
# 17     NY  0.1054719     7  0.305613984 0.3138637 -0.2001421 0.1272727
# 18     NY  0.7513057     8  0.399467077 0.3688335  0.3518387 0.1757576
# 19     NY -0.1271655     9  0.493320170 0.4385542 -0.6204857 0.2484848
# 20     NY  1.2154852    10  0.587173262 0.5170932  0.6283119 0.3454545
# Variables not shown: .sigma (dbl), .cooksd (dbl), .std.resid (dbl)

现在我的回答有点晚了,但我正在寻找一个类似的功能。似乎 R 中的内置函数‘ by’也可以很容易地进行分组:

? by 包含以下示例,它适合每个组,并用 sapplication 提取系数:

require(stats)
## now suppose we want to extract the coefficients by group
tmp <- with(warpbreaks,
by(warpbreaks, tension,
function(x) lm(breaks ~ wool, data = x)))
sapply(tmp, coef)

这个问题似乎是关于如何调用回归函数的公式,这些公式在循环中被修改。

下面是如何做到这一点(使用钻石数据集) :

attach(ggplot2::diamonds)
strCols = names(ggplot2::diamonds)


formula <- list(); model <- list()
for (i in 1:1) {
formula[[i]] = paste0(strCols[7], " ~ ", strCols[7+i])
model[[i]] = glm(formula[[i]])


#then you can plot the results or anything else ...
png(filename = sprintf("diamonds_price=glm(%s).png", strCols[7+i]))
par(mfrow = c(2, 2))
plot(model[[i]])
dev.off()
}

我认为将 purrr::map方法添加到这个问题中是值得的。

library(tidyverse)


d <- data.frame(state=rep(c('NY', 'CA'), c(10, 10)),
year=rep(1:10, 2),
response=c(rnorm(10), rnorm(10)))


d %>%
group_by(state) %>%
nest() %>%
mutate(model = map(data, ~lm(response ~ year, data = .)))

参见@Paul Hiemstra 的答案,了解关于使用 broom包处理这些结果的进一步想法。