import inspect
import re
def overrides(method):
# actually can't do this because a method is really just a function while inside a class def'n
#assert(inspect.ismethod(method))
stack = inspect.stack()
base_classes = re.search(r'class.+\((.+)\)\s*\:', stack[2][4][0]).group(1)
# handle multiple inheritance
base_classes = [s.strip() for s in base_classes.split(',')]
if not base_classes:
raise ValueError('overrides decorator: unable to determine base class')
# stack[0]=overrides, stack[1]=inside class def'n, stack[2]=outside class def'n
derived_class_locals = stack[2][0].f_locals
# replace each class name in base_classes with the actual class type
for i, base_class in enumerate(base_classes):
if '.' not in base_class:
base_classes[i] = derived_class_locals[base_class]
else:
components = base_class.split('.')
# obj is either a module or a class
obj = derived_class_locals[components[0]]
for c in components[1:]:
assert(inspect.ismodule(obj) or inspect.isclass(obj))
obj = getattr(obj, c)
base_classes[i] = obj
assert( any( hasattr(cls, method.__name__) for cls in base_classes ) )
return method
def overrides(interface_class):
"""
Function override annotation.
Corollary to @abc.abstractmethod where the override is not of an
abstractmethod.
Modified from answer https://stackoverflow.com/a/8313042/471376
"""
def confirm_override(method):
if method.__name__ not in dir(interface_class):
raise NotImplementedError('function "%s" is an @override but that'
' function is not implemented in base'
' class %s'
% (method.__name__,
interface_class)
)
def func():
pass
attr = getattr(interface_class, method.__name__)
if type(attr) is not type(func):
raise NotImplementedError('function "%s" is an @override'
' but that is implemented as type %s'
' in base class %s, expected implemented'
' type %s'
% (method.__name__,
type(attr),
interface_class,
type(func))
)
return method
return confirm_override
下面是它在实践中的样子:
NotImplementedError“基类中未实现”
class A(object):
# ERROR: `a` is not a implemented!
pass
class B(A):
@overrides(A)
def a(self):
pass
导致更具有描述性的NotImplementedError错误
function "a" is an @override but that function is not implemented in base class <class '__main__.A'>
完整的堆栈
Traceback (most recent call last):
…
File "C:/Users/user1/project.py", line 135, in <module>
class B(A):
File "C:/Users/user1/project.py", line 136, in B
@overrides(A)
File "C:/Users/user1/project.py", line 110, in confirm_override
interface_class)
NotImplementedError: function "a" is an @override but that function is not implemented in base class <class '__main__.A'>
NotImplementedError“期望实现的类型”
class A(object):
# ERROR: `a` is not a function!
a = ''
class B(A):
@overrides(A)
def a(self):
pass
导致更具有描述性的NotImplementedError错误
function "a" is an @override but that is implemented as type <class 'str'> in base class <class '__main__.A'>, expected implemented type <class 'function'>
完整的堆栈
Traceback (most recent call last):
…
File "C:/Users/user1/project.py", line 135, in <module>
class B(A):
File "C:/Users/user1/project.py", line 136, in B
@overrides(A)
File "C:/Users/user1/project.py", line 125, in confirm_override
type(func))
NotImplementedError: function "a" is an @override but that is implemented as type <class 'str'> in base class <class '__main__.A'>, expected implemented type <class 'function'>
from multipledispatch import dispatch as Override
# using alias 'Override' just to give you some feel :)
class A:
def foo(self):
print('foo in A')
# More methods here
class B(A):
@Override()
def foo(self):
print('foo in B')
@Override(int)
def foo(self,a):
print('foo in B; arg =',a)
@Override(str,float)
def foo(self,a,b):
print('foo in B; arg =',(a,b))
a=A()
b=B()
a.foo()
b.foo()
b.foo(4)
b.foo('Wheee',3.14)
输出:
foo in A
foo in B
foo in B; arg = 4
foo in B; arg = ('Wheee', 3.14)
from typing import Protocol
class A(Protocol):
def b(self):
...
def d(self): # we forgot to implement this in C
...
class C:
def b(self):
return 0
bob: A = C()
输入检查结果:
test.py:13: error: Incompatible types in assignment (expression has type "C", variable has type "A")
test.py:13: note: 'C' is missing following 'A' protocol member:
test.py:13: note: d
Found 1 error in 1 file (checked 1 source file)
class Parent:
def a():
pass
def b():
pass
class Child(Overrides, Parent):
def a()
# raises an error, as b() is not overridden
class Overrides:
def __init__(self):
# collect all defined methods of all base-classes
bases = [b for b in self.__class__.__bases__ if b != Overrides]
required_methods = set()
for base in bases:
required_methods = required_methods.union(set([f for f in dir(base) if not f.startswith('_')]))
# check for each method in each base class (in required_methods)
# if the class, that inherits `Overrides` implements them all
missing = []
# me is the fully qualified name of the CLASS, which inherits
# `Overrides`
me = self.__class__.__qualname__
for required_method in required_methods:
# The method can be either defined in the parent or the child
# class. To check it, we get a reference to the method via
# getattr
try:
found = getattr(self, required_method)
except AttributeError:
# this should not happen, as getattr returns the method in
# the parent class if it is not defined in the cild class.
# It has to be in a parent class, as the required_methods
# is a union of all base-class methods.
missing.append(required_method)
continue
# here is, where the magic happens.
# found is a reference to a method, and found.__qualname__ is
# the full-name of the METHOD. Remember, that me is the full
# name of the class.
# We want to check, where the method is defined. If it is
# defined in an parent class, we did no override it, thus it
# is missing.
# If we did not override, the __qualname__ is Parent.method
# If we did override it, the __qualname__ is Child.method
# With this fact, we can determine if the class, which uses
# `Override` did implement it.
if not found.__qualname__.startswith(me + '.'):
missing.append(required_method)
# Maybe a warning would be enough here
if missing != []:
raise AssertionError(f'{me} did not override these methods: {missing}')