基地62转换

如何将一个整数转换为以62为基数的数字(比如十六进制,但使用以下数字: ‘0123456789abcdefgajklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ’)。

我一直试图为它找到一个好的 Python 库,但它们似乎都忙于转换字符串。Python base64模块只接受字符串,并将一个数字转换为四个字符。我正在寻找类似网址缩短程序使用的东西。

89619 次浏览

You probably want base64, not base62. There's an URL-compatible version of it floating around, so the extra two filler characters shouldn't be a problem.

The process is fairly simple; consider that base64 represents 6 bits and a regular byte represents 8. Assign a value from 000000 to 111111 to each of the 64 characters chosen, and put the 4 values together to match a set of 3 base256 bytes. Repeat for each set of 3 bytes, padding at the end with your choice of padding character (0 is generally useful).

Sorry, I can't help you with a library here. I would prefer using base64 and just adding to extra characters to your choice -- if possible!

Then you can use the base64 module.

If this is really, really not possible:

You can do it yourself this way (this is pseudo-code):

base62vals = []
myBase = 62
while num > 0:
reminder = num % myBase
num = num / myBase
base62vals.insert(0, reminder)

There is no standard module for this, but I have written my own functions to achieve that.

BASE62 = "0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"


def encode(num, alphabet):
"""Encode a positive number into Base X and return the string.


Arguments:
- `num`: The number to encode
- `alphabet`: The alphabet to use for encoding
"""
if num == 0:
return alphabet[0]
arr = []
arr_append = arr.append  # Extract bound-method for faster access.
_divmod = divmod  # Access to locals is faster.
base = len(alphabet)
while num:
num, rem = _divmod(num, base)
arr_append(alphabet[rem])
arr.reverse()
return ''.join(arr)


def decode(string, alphabet=BASE62):
"""Decode a Base X encoded string into the number


Arguments:
- `string`: The encoded string
- `alphabet`: The alphabet to use for decoding
"""
base = len(alphabet)
strlen = len(string)
num = 0


idx = 0
for char in string:
power = (strlen - (idx + 1))
num += alphabet.index(char) * (base ** power)
idx += 1


return num

Notice the fact that you can give it any alphabet to use for encoding and decoding. If you leave the alphabet argument out, you are going to get the 62 character alphabet defined on the first line of code, and hence encoding/decoding to/from 62 base.

Hope this helps.

PS - For URL shorteners, I have found that it's better to leave out a few confusing characters like 0Ol1oI etc. Thus I use this alphabet for my URL shortening needs - "23456789abcdefghijkmnpqrstuvwxyzABCDEFGHJKLMNPQRSTUVWXYZ"

Have fun.

you can download zbase62 module from pypi

eg

>>> import zbase62
>>> zbase62.b2a("abcd")
'1mZPsa'

Personally I like the solution from Baishampayan, mostly because of stripping the confusing characters.

For completeness, and solution with better performance, this post shows a way to use the Python base64 module.

The following decoder-maker works with any reasonable base, has a much tidier loop, and gives an explicit error message when it meets an invalid character.

def base_n_decoder(alphabet):
"""Return a decoder for a base-n encoded string
Argument:
- `alphabet`: The alphabet used for encoding
"""
base = len(alphabet)
char_value = dict(((c, v) for v, c in enumerate(alphabet)))
def f(string):
num = 0
try:
for char in string:
num = num * base + char_value[char]
except KeyError:
raise ValueError('Unexpected character %r' % char)
return num
return f


if __name__ == "__main__":
func = base_n_decoder('0123456789abcdef')
for test in ('0', 'f', '2020', 'ffff', 'abqdef'):
print test
print func(test)

I once wrote a script to do this aswell, I think it's quite elegant :)

import string
# Remove the `_@` below for base62, now it has 64 characters
BASE_LIST = string.digits + string.letters + '_@'
BASE_DICT = dict((c, i) for i, c in enumerate(BASE_LIST))


def base_decode(string, reverse_base=BASE_DICT):
length = len(reverse_base)
ret = 0
for i, c in enumerate(string[::-1]):
ret += (length ** i) * reverse_base[c]


return ret


def base_encode(integer, base=BASE_LIST):
if integer == 0:
return base[0]


length = len(base)
ret = ''
while integer != 0:
ret = base[integer % length] + ret
integer /= length


return ret

Example usage:

for i in range(100):
print i, base_decode(base_encode(i)), base_encode(i)

If all you need is to generate a short ID (since you mention URL shorteners) rather than encode/decode something, this module might help:

https://github.com/stochastic-technologies/shortuuid/

I have benefited greatly from others' posts here. I needed the python code originally for a Django project, but since then I have turned to node.js, so here's a javascript version of the code (the encoding part) that Baishampayan Ghose provided.

var ALPHABET = "0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ";


function base62_encode(n, alpha) {
var num = n || 0;
var alphabet = alpha || ALPHABET;


if (num == 0) return alphabet[0];
var arr = [];
var base = alphabet.length;


while(num) {
rem = num % base;
num = (num - rem)/base;
arr.push(alphabet.substring(rem,rem+1));
}


return arr.reverse().join('');
}


console.log(base62_encode(2390687438976, "123456789ABCDEFGHIJKLMNPQRSTUVWXYZ"));

I wrote this a while back and it's worked pretty well (negatives and all included)

def code(number,base):
try:
int(number),int(base)
except ValueError:
raise ValueError('code(number,base): number and base must be in base10')
else:
number,base = int(number),int(base)
if base < 2:
base = 2
if base > 62:
base = 62
numbers = [0,1,2,3,4,5,6,7,8,9,"a","b","c","d","e","f","g","h","i","j",
"k","l","m","n","o","p","q","r","s","t","u","v","w","x","y",
"z","A","B","C","D","E","F","G","H","I","J","K","L","M","N",
"O","P","Q","R","S","T","U","V","W","X","Y","Z"]
final = ""
loc = 0
if number < 0:
final = "-"
number = abs(number)
while base**loc <= number:
loc = loc + 1
for x in range(loc-1,-1,-1):
for y in range(base-1,-1,-1):
if y*(base**x) <= number:
final = "{}{}".format(final,numbers[y])
number = number - y*(base**x)
break
return final


def decode(number,base):
try:
int(base)
except ValueError:
raise ValueError('decode(value,base): base must be in base10')
else:
base = int(base)
number = str(number)
if base < 2:
base = 2
if base > 62:
base = 62
numbers = ["0","1","2","3","4","5","6","7","8","9","a","b","c","d","e","f",
"g","h","i","j","k","l","m","n","o","p","q","r","s","t","u","v",
"w","x","y","z","A","B","C","D","E","F","G","H","I","J","K","L",
"M","N","O","P","Q","R","S","T","U","V","W","X","Y","Z"]
final = 0
if number.startswith("-"):
neg = True
number = list(number)
del(number[0])
temp = number
number = ""
for x in temp:
number = "{}{}".format(number,x)
else:
neg = False
loc = len(number)-1
number = str(number)
for x in number:
if numbers.index(x) > base:
raise ValueError('{} is out of base{} range'.format(x,str(base)))
final = final+(numbers.index(x)*(base**loc))
loc = loc - 1
if neg:
return -final
else:
return final

sorry about the length of it all

If you're looking for the highest efficiency (like django), you'll want something like the following. This code is a combination of efficient methods from Baishampayan Ghose and WoLpH and John Machin.

# Edit this list of characters as desired.
BASE_ALPH = tuple("0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz")
BASE_DICT = dict((c, v) for v, c in enumerate(BASE_ALPH))
BASE_LEN = len(BASE_ALPH)


def base_decode(string):
num = 0
for char in string:
num = num * BASE_LEN + BASE_DICT[char]
return num


def base_encode(num):
if not num:
return BASE_ALPH[0]


encoding = ""
while num:
num, rem = divmod(num, BASE_LEN)
encoding = BASE_ALPH[rem] + encoding
return encoding

You may want to also calculate your dictionary in advance. (Note: Encoding with a string shows more efficiency than with a list, even with very long numbers.)

>>> timeit.timeit("for i in xrange(1000000): base.base_decode(base.base_encode(i))", setup="import base", number=1)
2.3302059173583984

Encoded and decoded 1 million numbers in under 2.5 seconds. (2.2Ghz i7-2670QM)

BASE_LIST = tuple("23456789ABCDEFGHJKLMNOPQRSTUVWXYZabcdefghjkmnpqrstuvwxyz")
BASE_DICT = dict((c, v) for v, c in enumerate(BASE_LIST))
BASE_LEN = len(BASE_LIST)


def nice_decode(str):
num = 0
for char in str[::-1]:
num = num * BASE_LEN + BASE_DICT[char]
return num


def nice_encode(num):
if not num:
return BASE_LIST[0]


encoding = ""
while num:
num, rem = divmod(num, BASE_LEN)
encoding += BASE_LIST[rem]
return encoding

I hope the following snippet could help.

def num2sym(num, sym, join_symbol=''):
if num == 0:
return sym[0]
if num < 0 or type(num) not in (int, long):
raise ValueError('num must be positive integer')


l = len(sym)  # target number base
r = []
div = num
while div != 0: # base conversion
div, mod = divmod(div, l)
r.append(sym[mod])


return join_symbol.join([x for x in reversed(r)])

Usage for your case:

number = 367891
alphabet = '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'
print num2sym(number, alphabet)  # will print '1xHJ'

Obviously, you can specify another alphabet, consisting of lesser or greater number of symbols, then it will convert your number to the lesser or greater number base. For example, providing '01' as an alphabet will output string representing input number as binary.

You may shuffle the alphabet initially to have your unique representation of the numbers. It can be helpful if you're making URL shortener service.

Here is an recurive and iterative way to do that. The iterative one is a little faster depending on the count of execution.

def base62_encode_r(dec):
s = '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'
return s[dec] if dec < 62 else base62_encode_r(dec / 62) + s[dec % 62]
print base62_encode_r(2347878234)


def base62_encode_i(dec):
s = '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'
ret = ''
while dec > 0:
ret = s[dec % 62] + ret
dec /= 62
return ret
print base62_encode_i(2347878234)


def base62_decode_r(b62):
s = '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'
if len(b62) == 1:
return s.index(b62)
x = base62_decode_r(b62[:-1]) * 62 + s.index(b62[-1:]) % 62
return x
print base62_decode_r("2yTsnM")


def base62_decode_i(b62):
s = '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'
ret = 0
for i in xrange(len(b62)-1,-1,-1):
ret = ret + s.index(b62[i]) * (62**(len(b62)-i-1))
return ret
print base62_decode_i("2yTsnM")


if __name__ == '__main__':
import timeit
print(timeit.timeit(stmt="base62_encode_r(2347878234)", setup="from __main__ import base62_encode_r", number=100000))
print(timeit.timeit(stmt="base62_encode_i(2347878234)", setup="from __main__ import base62_encode_i", number=100000))
print(timeit.timeit(stmt="base62_decode_r('2yTsnM')", setup="from __main__ import base62_decode_r", number=100000))
print(timeit.timeit(stmt="base62_decode_i('2yTsnM')", setup="from __main__ import base62_decode_i", number=100000))


0.270266867033
0.260915645986
0.344734796766
0.311662500262

There is now a python library for this.

I'm working on making a pip package for this.

I recommend you use my bases.py https://github.com/kamijoutouma/bases.py which was inspired by bases.js

from bases import Bases
bases = Bases()


bases.toBase16(200)                // => 'c8'
bases.toBase(200, 16)              // => 'c8'
bases.toBase62(99999)              // => 'q0T'
bases.toBase(200, 62)              // => 'q0T'
bases.toAlphabet(300, 'aAbBcC')    // => 'Abba'


bases.fromBase16('c8')               // => 200
bases.fromBase('c8', 16)             // => 200
bases.fromBase62('q0T')              // => 99999
bases.fromBase('q0T', 62)            // => 99999
bases.fromAlphabet('Abba', 'aAbBcC') // => 300

refer to https://github.com/kamijoutouma/bases.py#known-basesalphabets for what bases are usable

Here's my solution:

def base62(a):
baseit = (lambda a=a, b=62: (not a) and '0' or
baseit(a-a%b, b*62) + '0123456789abcdefghijklmnopqrstuvwxyz'
'ABCDEFGHIJKLMNOPQRSTUVWXYZ'[a%b%61 or -1*bool(a%b)])
return baseit()

explanation

In any base every number is equal to a1+a2*base**2+a3*base**3... So the goal is to find all the as.

For every N=1,2,3... the code isolates the aN*base**N by "moduloing" by b for b=base**(N+1) which slices all as bigger than N, and slicing all the as so that their serial is smaller than N by decreasing a everytime the function is called recursively by the current aN*base**N.

Base%(base-1)==1 therefore base**p%(base-1)==1 and therefore q*base^p%(base-1)==q with only one exception, when q==base-1 which returns 0. To fix that case it returns 0. The function checks for 0 from the beginning.


advantages

In this sample there's only one multiplication (instead of a division) and some modulus operations, which are all relatively fast.

If you use django framework, you can use django.utils.baseconv module.

>>> from django.utils import baseconv
>>> baseconv.base62.encode(1234567890)
1LY7VK

In addition to base62, baseconv also defined base2/base16/base36/base56/base64.

with simple recursion

"""
This module contains functions to transform a number to string and vice-versa
"""
BASE = "0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"
LEN_BASE = len(BASE)




def encode(num):
"""
This function encodes the given number into alpha numeric string
"""


if num < LEN_BASE:
return BASE[num]


return BASE[num % LEN_BASE] + encode(num//LEN_BASE)




def decode_recursive(string, index):
"""
recursive util function for decode
"""


if not string or index >= len(string):
return 0


return (BASE.index(string[index]) * LEN_BASE ** index) + decode_recursive(string, index + 1)




def decode(string):
"""
This function decodes given string to number
"""


return decode_recursive(string, 0)


Python 3.7.x

I found a PhD's github for some algorithms when looking for an existing base62 script. It didn't work for the current max-version of Python 3 at this time so I went ahead and fixed where needed and did a little refactoring. I don't usually work with Python and have always used it ad-hoc so YMMV. All credit goes to Dr. Zhihua Lai. I just worked the kinks out for this version of Python.

file base62.py

#modified from Dr. Zhihua Lai's original on GitHub
from math import floor
base = '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ';
b = 62;
def toBase10(b62: str) -> int:
limit = len(b62)
res = 0
for i in range(limit):
res = b * res + base.find(b62[i])
return res
def toBase62(b10: int) -> str:
if b <= 0 or b > 62:
return 0
r = b10 % b
res = base[r];
q = floor(b10 / b)
while q:
r = q % b
q = floor(q / b)
res = base[int(r)] + res
return res

file try_base62.py

import base62
print("Base10 ==> Base62")
for i in range(999):
print(f'{i} => {base62.toBase62(i)}')
base62_samples = ["gud", "GA", "mE", "lo", "lz", "OMFGWTFLMFAOENCODING"]
print("Base62 ==> Base10")
for i in range(len(base62_samples)):
print(f'{base62_samples[i]} => {base62.toBase10(base62_samples[i])}')

output of try_base62.py

Base10 ==> Base62
0 => 0
[...]
998 => g6
Base62 ==> Base10
gud => 63377
GA => 2640
mE => 1404
lo => 1326
lz => 1337
OMFGWTFLMFAOENCODING => 577002768656147353068189971419611424

Since there was no licensing info in the repo I did submit a PR so the original author at least knows other people are using and modifying their code.

Simplest ever.

BASE62 = "0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"
def encode_base62(num):
s = ""
while num>0:
num,r = divmod(num,62)
s = BASE62[r]+s
return s




def decode_base62(num):
x,s = 1,0
for i in range(len(num)-1,-1,-1):
s = int(BASE62.index(num[i])) *x + s
x*=62
return s


print(encode_base62(123))
print(decode_base62("1Z"))

Benchmarking answers that worked for Python3 (machine: i7-8565U):

"""
us per enc()+dec()  #  test


(4.477935791015625, 2, '3Tx16Db2JPSS4ZdQ4dp6oW')
(6.073190927505493, 5, '3Tx16Db2JPSS4ZdQ4dp6oW')
(9.051250696182251, 9, '3Tx16Db2JPSS4ZdQ4dp6oW')
(9.864609956741333, 6, '3Tx16Db2JOOqeo6GCGscmW')
(10.868197917938232, 1, '3Tx16Db2JPSS4ZdQ4dp6oW')
(11.018349647521973, 10, '3Tx16Db2JPSS4ZdQ4dp6oW')
(12.448230504989624, 4, '03Tx16Db2JPSS4ZdQ4dp6oW')
(13.016672611236572, 7, '3Tx16Db2JPSS4ZdQ4dp6oW')
(13.212724447250366, 8, '3Tx16Db2JPSS4ZdQ4dp6oW')
(24.119479656219482, 3, '3tX16dB2jpss4zDq4DP6Ow')
"""


from time import time


half = 2 ** 127
results = []




def bench(n, enc, dec):
start = time()
for i in range(half, half + 1_000_000):
dec(enc(i))
end = time()
results.append(tuple([end - start, n, enc(half + 1234134134134314)]))




BASE62 = "0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"




def encode(num, alphabet=BASE62):
"""Encode a positive number into Base X and return the string.


Arguments:
- `num`: The number to encode
- `alphabet`: The alphabet to use for encoding
"""
if num == 0:
return alphabet[0]
arr = []
arr_append = arr.append  # Extract bound-method for faster access.
_divmod = divmod  # Access to locals is faster.
base = len(alphabet)
while num:
num, rem = _divmod(num, base)
arr_append(alphabet[rem])
arr.reverse()
return ''.join(arr)




def decode(string, alphabet=BASE62):
"""Decode a Base X encoded string into the number


Arguments:
- `string`: The encoded string
- `alphabet`: The alphabet to use for decoding
"""
base = len(alphabet)
strlen = len(string)
num = 0


idx = 0
for char in string:
power = (strlen - (idx + 1))
num += alphabet.index(char) * (base ** power)
idx += 1


return num




bench(1, encode, decode)
###########################################################################################################
# Remove the `_@` below for base62, now it has 64 characters
BASE_ALPH = tuple(BASE62)
BASE_LIST = BASE62
BASE_DICT = dict((c, v) for v, c in enumerate(BASE_ALPH))


###########################################################################################################
BASE_LEN = len(BASE_ALPH)




def decode(string):
num = 0
for char in string:
num = num * BASE_LEN + BASE_DICT[char]
return num




def encode(num):
if not num:
return BASE_ALPH[0]


encoding = ""
while num:
num, rem = divmod(num, BASE_LEN)
encoding = BASE_ALPH[rem] + encoding
return encoding




bench(2, encode, decode)


###########################################################################################################
from django.utils import baseconv


bench(3, baseconv.base62.encode, baseconv.base62.decode)




###########################################################################################################
def encode(a):
baseit = (lambda a=a, b=62: (not a) and '0' or
baseit(a - a % b, b * 62) + '0123456789abcdefghijklmnopqrstuvwxyz'
'ABCDEFGHIJKLMNOPQRSTUVWXYZ'[
a % b % 61 or -1 * bool(a % b)])
return baseit()




bench(4, encode, decode)




###########################################################################################################
def encode(num, sym=BASE62, join_symbol=''):
if num == 0:
return sym[0]


l = len(sym)  # target number base
r = []
div = num
while div != 0:  # base conversion
div, mod = divmod(div, l)
r.append(sym[mod])


return join_symbol.join([x for x in reversed(r)])




bench(5, encode, decode)


###########################################################################################################
from math import floor


base = '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ';
b = 62;




def decode(b62: str) -> int:
limit = len(b62)
res = 0
for i in range(limit):
res = b * res + base.find(b62[i])
return res




def encode(b10: int) -> str:
if b <= 0 or b > 62:
return 0
r = b10 % b
res = base[r];
q = floor(b10 / b)
while q:
r = q % b
q = floor(q / b)
res = base[int(r)] + res
return res




bench(6, encode, decode)




###########################################################################################################
def encode(dec):
s = '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'
return s[dec] if dec < 62 else encode(dec // 62) + s[int(dec % 62)]




def decode(b62):
s = '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'
if len(b62) == 1:
return s.index(b62)
x = decode(b62[:-1]) * 62 + s.index(b62[-1:]) % 62
return x




bench(7, encode, decode)




def encode(dec):
s = '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'
ret = ''
while dec > 0:
ret = s[dec % 62] + ret
dec //= 62
return ret




def decode(b62):
s = '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'
ret = 0
for i in range(len(b62) - 1, -1, -1):
ret = ret + s.index(b62[i]) * (62 ** (len(b62) - i - 1))
return ret




bench(8, encode, decode)




###########################################################################################################


def encode(num):
s = ""
while num > 0:
num, r = divmod(num, 62)
s = BASE62[r] + s
return s




def decode(num):
x, s = 1, 0
for i in range(len(num) - 1, -1, -1):
s = int(BASE62.index(num[i])) * x + s
x *= 62
return s




bench(9, encode, decode)




###########################################################################################################


def encode(number: int, alphabet=BASE62, padding: int = 22) -> str:
l = len(alphabet)
res = []
while number > 0:
number, rem = divmod(number, l)
res.append(alphabet[rem])
if number == 0:
break
return "".join(res)[::-1]  # .rjust(padding, "0")




def decode(digits: str, lookup=BASE_DICT) -> int:
res = 0
last = len(digits) - 1
base = len(lookup)
for i, d in enumerate(digits):
res += lookup[d] * pow(base, last - i)
return res




bench(10, encode, decode)


###########################################################################################################


for row in sorted(results):
print(row)

Original javascript version:

var hash = "", alphabet = "0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ", alphabetLength =
alphabet.length;
do {
hash = alphabet[input % alphabetLength] + hash;
input = parseInt(input / alphabetLength, 10);
} while (input);

Source: https://hashids.org/

python:

def to_base62(number):
alphabet = "0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"
alphabetLength = len(alphabet)
result = ""
while True:
result = alphabet[number % alphabetLength] + result
number = int(number / alphabetLength)
if number == 0:
break
return result


print to_base62(59*(62**2) + 60*(62) + 61)
# result: XYZ

In all solutions above they define the alphabet itself when in reality it's already available using the ASCII codes.

def converter_base62(count) -> str:
result = ''
start = ord('0')
while count > 0:
result = chr(count % 62 + start) + result
count //= 62
return result




def decode_base62(string_to_decode: str):
result = 0
start = ord('0')
for char in string_to_decode:
result = result * 62 + (ord(char)-start)
return result


import tqdm


n = 10_000_000


for i in tqdm.tqdm(range(n)):
assert decode_base62(converter_base62(i)) == i