如何在c++中转换大端值和小端值?

如何在c++中转换大端值和小端值?

为了清晰起见,我必须将二进制数据(双精度浮点值以及32位和64位整数)从一个CPU架构转换到另一个CPU架构。这并不涉及网络,因此ntoh()和类似的函数在这里不能工作。


注意:我接受的答案直接适用于我的目标编译器(这就是我选择它的原因)。然而,这里还有其他非常好的、更方便的答案。

394336 次浏览

如果您这样做是为了在不同平台之间传输数据,请查看ntoh和hton函数。

我们已经用模板做到了这一点。你可以这样做:

// Specialization for 2-byte types.
template<>
inline void endian_byte_swapper< 2 >(char* dest, char const* src)
{
// Use bit manipulations instead of accessing individual bytes from memory, much faster.
ushort* p_dest = reinterpret_cast< ushort* >(dest);
ushort const* const p_src = reinterpret_cast< ushort const* >(src);
*p_dest = (*p_src >> 8) | (*p_src << 8);
}


// Specialization for 4-byte types.
template<>
inline void endian_byte_swapper< 4 >(char* dest, char const* src)
{
// Use bit manipulations instead of accessing individual bytes from memory, much faster.
uint* p_dest = reinterpret_cast< uint* >(dest);
uint const* const p_src = reinterpret_cast< uint const* >(src);
*p_dest = (*p_src >> 24) | ((*p_src & 0x00ff0000) >> 8) | ((*p_src & 0x0000ff00) << 8) | (*p_src << 24);
}

和在C中一样:

short big = 0xdead;
short little = (((big & 0xff)<<8) | ((big & 0xff00)>>8));

您还可以声明一个无符号字符的向量,将输入值memcpy放入其中,将字节反向转换为另一个向量,然后将字节memcpy取出,但这将花费比旋转位长几个数量级的时间,特别是对于64位值。

查找位移位,因为这基本上是所有你需要做的交换从小->大端dian。然后根据位的大小,改变位移位的方式。

如果你正在使用Visual c++,请执行以下操作:包含inner .h并调用以下函数:

对于16位数字:

unsigned short _byteswap_ushort(unsigned short value);

对于32位数字:

unsigned long _byteswap_ulong(unsigned long value);

对于64位数字:

unsigned __int64 _byteswap_uint64(unsigned __int64 value);

8位数字(字符)不需要转换。

此外,这些仅定义为无符号值,它们也适用于有符号整数。

对于浮点数和双精度数,要比普通整数困难得多,因为它们可能在主机的字节顺序中。你可以在大端机器上得到小端浮点数,反之亦然。

其他编译器也有类似的特性。

例如,在海湾合作委员会中,你可以直接调用这里记录了一些内置组件:

uint32_t __builtin_bswap32 (uint32_t x)
uint64_t __builtin_bswap64 (uint64_t x)

(不需要包含任何东西)。Afaik bits.h也以非gcc为中心的方式声明了相同的函数。

16位交换就是位旋转。

顺便说一句,调用这些内在函数而不是调用自己的内在函数可以获得最好的性能和代码密度。

从大端序到小端序的过程与从小端序到大端序的过程是一样的。

下面是一些示例代码:

void swapByteOrder(unsigned short& us)
{
us = (us >> 8) |
(us << 8);
}


void swapByteOrder(unsigned int& ui)
{
ui = (ui >> 24) |
((ui<<8) & 0x00FF0000) |
((ui>>8) & 0x0000FF00) |
(ui << 24);
}


void swapByteOrder(unsigned long long& ull)
{
ull = (ull >> 56) |
((ull<<40) & 0x00FF000000000000) |
((ull<<24) & 0x0000FF0000000000) |
((ull<<8) & 0x000000FF00000000) |
((ull>>8) & 0x00000000FF000000) |
((ull>>24) & 0x0000000000FF0000) |
((ull>>40) & 0x000000000000FF00) |
(ull << 56);
}

在大多数POSIX系统中(虽然不是在POSIX标准中)有end .h,它可以用来确定系统使用的编码。然后是这样的:

unsigned int change_endian(unsigned int x)
{
unsigned char *ptr = (unsigned char *)&x;
return (ptr[0] << 24) | (ptr[1] << 16) | (ptr[2] << 8) | ptr[3];
}

这将交换顺序(从大端序到小端序):

如果你有数字0xDEADBEEF(在一个小端序系统中存储为0xEFBEADDE), ptr[0]将是0xEF, ptr[1]是0xBE,等等。

但是如果你想将它用于网络,那么htons, htonl和htonll(以及它们的逆ntohs, ntohl和ntohll)将有助于从主机顺序转换到网络顺序。

有一个名为BSWAP的汇编指令会为你做交换,极快。 你可以读到它在这里.

Visual Studio,或者更准确地说是Visual c++运行时库,为此提供了平台intrinsic,称为_byteswap_ushort(), _byteswap_ulong(), and _byteswap_int64()。其他平台应该也有类似的情况,但我不知道它们会被称为什么。

如果你这样做是为了网络/主机兼容性,你应该使用:

ntohl() //Network to Host byte order (Long)
htonl() //Host to Network byte order (Long)


ntohs() //Network to Host byte order (Short)
htons() //Host to Network byte order (Short)

如果是出于其他原因,这里提供的byte_swap解决方案之一也可以很好地工作。

这是我想到的一个通用版本,用于在适当的位置交换值。如果性能存在问题,其他建议会更好。

 template<typename T>
void ByteSwap(T * p)
{
for (int i = 0;  i < sizeof(T)/2;  ++i)
std::swap(((char *)p)[i], ((char *)p)[sizeof(T)-1-i]);
}

免责声明:我还没有尝试编译这个或测试它。

我有这个代码,允许我从HOST_ENDIAN_ORDER(无论它是什么)转换为LITTLE_ENDIAN_ORDER或BIG_ENDIAN_ORDER。我使用一个模板,所以如果我试图从HOST_ENDIAN_ORDER转换为LITTLE_ENDIAN_ORDER,他们恰好是相同的机器为我编译,不会生成任何代码。

下面是带有注释的代码:

// We define some constant for little, big and host endianess. Here I use
// BOOST_LITTLE_ENDIAN/BOOST_BIG_ENDIAN to check the host indianess. If you
// don't want to use boost you will have to modify this part a bit.
enum EEndian
{
LITTLE_ENDIAN_ORDER,
BIG_ENDIAN_ORDER,
#if defined(BOOST_LITTLE_ENDIAN)
HOST_ENDIAN_ORDER = LITTLE_ENDIAN_ORDER
#elif defined(BOOST_BIG_ENDIAN)
HOST_ENDIAN_ORDER = BIG_ENDIAN_ORDER
#else
#error "Impossible de determiner l'indianness du systeme cible."
#endif
};


// this function swap the bytes of values given it's size as a template
// parameter (could sizeof be used?).
template <class T, unsigned int size>
inline T SwapBytes(T value)
{
union
{
T value;
char bytes[size];
} in, out;


in.value = value;


for (unsigned int i = 0; i < size / 2; ++i)
{
out.bytes[i] = in.bytes[size - 1 - i];
out.bytes[size - 1 - i] = in.bytes[i];
}


return out.value;
}


// Here is the function you will use. Again there is two compile-time assertion
// that use the boost librarie. You could probably comment them out, but if you
// do be cautious not to use this function for anything else than integers
// types. This function need to be calles like this :
//
//     int x = someValue;
//     int i = EndianSwapBytes<HOST_ENDIAN_ORDER, BIG_ENDIAN_ORDER>(x);
//
template<EEndian from, EEndian to, class T>
inline T EndianSwapBytes(T value)
{
// A : La donnée à swapper à une taille de 2, 4 ou 8 octets
BOOST_STATIC_ASSERT(sizeof(T) == 2 || sizeof(T) == 4 || sizeof(T) == 8);


// A : La donnée à swapper est d'un type arithmetic
BOOST_STATIC_ASSERT(boost::is_arithmetic<T>::value);


// Si from et to sont du même type on ne swap pas.
if (from == to)
return value;


return SwapBytes<T, sizeof(T)>(value);
}

我从这篇文章中得到了一些建议,并把它们放在一起形成了这个:

#include <boost/type_traits.hpp>
#include <boost/static_assert.hpp>
#include <boost/detail/endian.hpp>
#include <stdexcept>
#include <cstdint>


enum endianness
{
little_endian,
big_endian,
network_endian = big_endian,
    

#if defined(BOOST_LITTLE_ENDIAN)
host_endian = little_endian
#elif defined(BOOST_BIG_ENDIAN)
host_endian = big_endian
#else
#error "unable to determine system endianness"
#endif
};


namespace detail {


template<typename T, size_t sz>
struct swap_bytes
{
inline T operator()(T val)
{
throw std::out_of_range("data size");
}
};


template<typename T>
struct swap_bytes<T, 1>
{
inline T operator()(T val)
{
return val;
}
};


template<typename T>
struct swap_bytes<T, 2>
{
inline T operator()(T val)
{
return ((((val) >> 8) & 0xff) | (((val) & 0xff) << 8));
}
};


template<typename T>
struct swap_bytes<T, 4>
{
inline T operator()(T val)
{
return ((((val) & 0xff000000) >> 24) |
(((val) & 0x00ff0000) >>  8) |
(((val) & 0x0000ff00) <<  8) |
(((val) & 0x000000ff) << 24));
}
};


template<>
struct swap_bytes<float, 4>
{
inline float operator()(float val)
{
uint32_t mem =swap_bytes<uint32_t, sizeof(uint32_t)>()(*(uint32_t*)&val);
return *(float*)&mem;
}
};


template<typename T>
struct swap_bytes<T, 8>
{
inline T operator()(T val)
{
return ((((val) & 0xff00000000000000ull) >> 56) |
(((val) & 0x00ff000000000000ull) >> 40) |
(((val) & 0x0000ff0000000000ull) >> 24) |
(((val) & 0x000000ff00000000ull) >> 8 ) |
(((val) & 0x00000000ff000000ull) << 8 ) |
(((val) & 0x0000000000ff0000ull) << 24) |
(((val) & 0x000000000000ff00ull) << 40) |
(((val) & 0x00000000000000ffull) << 56));
}
};


template<>
struct swap_bytes<double, 8>
{
inline double operator()(double val)
{
uint64_t mem =swap_bytes<uint64_t, sizeof(uint64_t)>()(*(uint64_t*)&val);
return *(double*)&mem;
}
};


template<endianness from, endianness to, class T>
struct do_byte_swap
{
inline T operator()(T value)
{
return swap_bytes<T, sizeof(T)>()(value);
}
};
// specialisations when attempting to swap to the same endianess
template<class T> struct do_byte_swap<little_endian, little_endian, T> { inline T operator()(T value) { return value; } };
template<class T> struct do_byte_swap<big_endian,    big_endian,    T> { inline T operator()(T value) { return value; } };


} // namespace detail


template<endianness from, endianness to, class T>
inline T byte_swap(T value)
{
// ensure the data is only 1, 2, 4 or 8 bytes
BOOST_STATIC_ASSERT(sizeof(T) == 1 || sizeof(T) == 2 || sizeof(T) == 4 || sizeof(T) == 8);
// ensure we're only swapping arithmetic types
BOOST_STATIC_ASSERT(boost::is_arithmetic<T>::value);


return detail::do_byte_swap<from, to, T>()(value);
}

然后你可以这样使用它:

// swaps val from host-byte-order to network-byte-order
auto swapped = byte_swap<host_endian, network_endian>(val);

反之亦然

// swap a value received from the network into host-byte-order
auto val = byte_swap<network_endian, host_endian>(val_from_network);

简单地说:

#include <climits>


template <typename T>
T swap_endian(T u)
{
static_assert (CHAR_BIT == 8, "CHAR_BIT != 8");


union
{
T u;
unsigned char u8[sizeof(T)];
} source, dest;


source.u = u;


for (size_t k = 0; k < sizeof(T); k++)
dest.u8[k] = source.u8[sizeof(T) - k - 1];


return dest.u;
}

用法:swap_endian<uint32_t>(42)

大多数平台都有一个系统头文件,提供了有效的byteswap函数。在Linux上,它在<endian.h>中。你可以用c++很好地包装它:

#include <iostream>


#include <endian.h>


template<size_t N> struct SizeT {};


#define BYTESWAPS(bits) \
template<class T> inline T htobe(T t, SizeT<bits / 8>) { return htobe ## bits(t); } \
template<class T> inline T htole(T t, SizeT<bits / 8>) { return htole ## bits(t); } \
template<class T> inline T betoh(T t, SizeT<bits / 8>) { return be ## bits ## toh(t); } \
template<class T> inline T letoh(T t, SizeT<bits / 8>) { return le ## bits ## toh(t); }


BYTESWAPS(16)
BYTESWAPS(32)
BYTESWAPS(64)


#undef BYTESWAPS


template<class T> inline T htobe(T t) { return htobe(t, SizeT<sizeof t>()); }
template<class T> inline T htole(T t) { return htole(t, SizeT<sizeof t>()); }
template<class T> inline T betoh(T t) { return betoh(t, SizeT<sizeof t>()); }
template<class T> inline T letoh(T t) { return letoh(t, SizeT<sizeof t>()); }


int main()
{
std::cout << std::hex;
std::cout << htobe(static_cast<unsigned short>(0xfeca)) << '\n';
std::cout << htobe(0xafbeadde) << '\n';


// Use ULL suffix to specify integer constant as unsigned long long
std::cout << htobe(0xfecaefbeafdeedfeULL) << '\n';
}

输出:

cafe
deadbeaf
feeddeafbeefcafe

我喜欢这个,只是为了风格:-)

long swap(long i) {
char *c = (char *) &i;
return * (long *) (char[]) {c[3], c[2], c[1], c[0] };
}

来自Rob Pike的字节顺序谬误:

假设数据流有一个小端编码的32位整数。下面是如何提取它(假设无符号字节):

i = (data[0]<<0) | (data[1]<<8) | (data[2]<<16) | ((unsigned)data[3]<<24);

如果它是big-endian,下面是如何提取它:

i = (data[3]<<0) | (data[2]<<8) | (data[1]<<16) | ((unsigned)data[0]<<24);

TL;博士:不要担心你的平台原生顺序,所有重要的是你正在读取的流的字节顺序,你最好希望它是定义良好的。

注1:这里的intunsigned int是32位,否则类型可能需要调整。

注2:移位前最后一个字节必须显式转换为unsigned,因为默认情况下它被提升为int,并且移位24位意味着操作符号位,即未定义行为。

请注意,至少对于Windows, htonl()比它们的内在对应_byteswap_ulong()慢得多。前者是对ws2_32.dll的一个DLL库调用,后者是一条BSWAP汇编指令。因此,如果你正在编写一些依赖于平台的代码,为了提高速度,最好使用intrinsic:

#define htonl(x) _byteswap_ulong(x)

这对于。png图像处理尤其重要,其中所有整数都保存在大端格式中,并说明“One can use htonl()…”{用来降低典型Windows程序的速度,如果你没有准备好}。

如果您采用反转单词中位序的常见模式,并剔除每个字节中反转位的部分,那么您将只剩下反转单词中的字节的部分。对于64位:

x = ((x & 0x00000000ffffffff) << 32) ^ ((x >> 32) & 0x00000000ffffffff);
x = ((x & 0x0000ffff0000ffff) << 16) ^ ((x >> 16) & 0x0000ffff0000ffff);
x = ((x & 0x00ff00ff00ff00ff) <<  8) ^ ((x >>  8) & 0x00ff00ff00ff00ff);

编译器应该清除了多余的位屏蔽操作(我留下它们以突出显示模式),但如果它没有,你可以这样重写第一行:

x = ( x                       << 32) ^  (x >> 32);

在大多数架构上,这通常应该简化为一条旋转指令(忽略整个操作可能是一条指令)。

在RISC处理器上,大而复杂的常量可能会导致编译困难。不过,您可以简单地计算前一个的每个常数。像这样:

uint64_t k = 0x00000000ffffffff; /* compiler should know a trick for this */
x = ((x & k) << 32) ^ ((x >> 32) & k);
k ^= k << 16;
x = ((x & k) << 16) ^ ((x >> 16) & k);
k ^= k << 8;
x = ((x & k) <<  8) ^ ((x >>  8) & k);

如果你愿意,你可以把它写成一个循环。这样做效率不高,只是为了好玩:

int i = sizeof(x) * CHAR_BIT / 2;
uintmax_t k = (1 << i) - 1;
while (i >= 8)
{
x = ((x & k) << i) ^ ((x >> i) & k);
i >>= 1;
k ^= k << i;
}

为了完整起见,这里是第一种形式的简化32位版本:

x = ( x               << 16) ^  (x >> 16);
x = ((x & 0x00ff00ff) <<  8) ^ ((x >>  8) & 0x00ff00ff);

认真……我不明白为什么所有的解决方案都是复杂< em > < / em >!最简单、最通用的模板函数如何?它可以在任何操作系统的任何情况下交换任何大小的任何类型????

template <typename T>
void SwapEnd(T& var)
{
static_assert(std::is_pod<T>::value, "Type must be POD type for safety");
std::array<char, sizeof(T)> varArray;
std::memcpy(varArray.data(), &var, sizeof(T));
for(int i = 0; i < static_cast<int>(sizeof(var)/2); i++)
std::swap(varArray[sizeof(var) - 1 - i],varArray[i]);
std::memcpy(&var, varArray.data(), sizeof(T));
}

这是C和c++结合的神奇力量!只需逐个字符交换原始变量。

点1:没有操作符:请记住,我没有使用简单的赋值操作符“=”,因为当反转字节序时,一些对象将被打乱,复制构造函数(或赋值操作符)将不起作用。因此,一个字符一个字符地复制它们更加可靠。

点2:注意对齐问题:注意我们正在从数组中复制和复制,这是正确的事情,因为c++编译器不保证我们可以访问未对齐的内存(为此,这个答案从原始形式更新)。例如,如果你分配了uint64_t,你的编译器不能保证你可以访问它的第3个字节作为uint8_t。因此,正确的做法是将其复制到一个char数组,交换它,然后将其复制回来(因此没有reinterpret_cast)。请注意,如果编译器能够访问单个字节而不考虑对齐方式,那么它们通常足够聪明,可以将你所做的转换回reinterpret_cast

使用此函数:

double x = 5;
SwapEnd(x);

现在x的字节顺序不同了。

如果一个大端位32位无符号整数看起来像0xAABBCCDD,它等于2864434397,那么同样的32位无符号整数在小端位处理器上看起来像0xDDCCBBAA,它也等于2864434397。

如果一个大端序16位无符号空头看起来像0xAABB,它等于43707,那么同一个16位无符号空头在小端序处理器上看起来像0xBBAA,它也等于43707。

这里有两个方便的#define函数,用于将字节从小端序转换为大端序,反之亦然——>

// can be used for short, unsigned short, word, unsigned word (2-byte types)
#define BYTESWAP16(n) (((n&0xFF00)>>8)|((n&0x00FF)<<8))


// can be used for int or unsigned int or float (4-byte types)
#define BYTESWAP32(n) ((BYTESWAP16((n&0xFFFF0000)>>16))|((BYTESWAP16(n&0x0000FFFF))<<16))


// can be used for unsigned long long or double (8-byte types)
#define BYTESWAP64(n) ((BYTESWAP32((n&0xFFFFFFFF00000000)>>32))|((BYTESWAP32(n&0x00000000FFFFFFFF))<<32))

哇,我简直不敢相信我在这里读到的一些答案。实际上汇编中有一条指令比其他任何程序都快。bswap。你可以简单地写一个这样的函数…

__declspec(naked) uint32_t EndianSwap(uint32 value)
{
__asm
{
mov eax, dword ptr[esp + 4]
bswap eax
ret
}
}

它是快于已经建议的内在函数。我把它们拆开看了看。上面的函数没有序言/尾声,因此实际上没有任何开销。

unsigned long _byteswap_ulong(unsigned long value);

做16位同样容易,除了你会使用xchg al,啊。Bswap仅适用于32位寄存器。

64位有点棘手,但也不过分。比上面所有带有循环和模板的例子都要好得多。

这里有一些注意事项……首先,bswap只能在80x486以上的CPU上使用。有人打算在386上运行吗?!?如果是这样,你仍然可以用…替换bswap。

mov ebx, eax
shr ebx, 16
xchg al, ah
xchg bl, bh
shl eax, 16
or eax, ebx

内联汇编也只能在Visual Studio的x86代码中使用。裸函数不能内衬,而且在x64版本中也不可用。对于那个实例,你必须使用编译器的内在函数。

我只是想在这里添加我自己的解,因为我在任何地方都没有看到它。它是一个小而可移植的c++模板函数,并且只使用比特操作。

template<typename T> inline static T swapByteOrder(const T& val) {
int totalBytes = sizeof(val);
T swapped = (T) 0;
for (int i = 0; i < totalBytes; ++i) {
swapped |= (val >> (8*(totalBytes-i-1)) & 0xFF) << (8*i);
}
return swapped;
}

实现优化器友好的未对齐非就地末端访问器的可移植技术。它们处理每个编译器、每个边界对齐和每个字节排序。这些未对齐的例程被补充或讨论,取决于本机的端序和对齐方式。部分列出,但你懂的。BO*是基于本机字节排序的常数值。

uint32_t sw_get_uint32_1234(pu32)
uint32_1234 *pu32;
{
union {
uint32_1234 u32_1234;
uint32_t u32;
} bou32;
bou32.u32_1234[0] = (*pu32)[BO32_0];
bou32.u32_1234[1] = (*pu32)[BO32_1];
bou32.u32_1234[2] = (*pu32)[BO32_2];
bou32.u32_1234[3] = (*pu32)[BO32_3];
return(bou32.u32);
}


void sw_set_uint32_1234(pu32, u32)
uint32_1234 *pu32;
uint32_t u32;
{
union {
uint32_1234 u32_1234;
uint32_t u32;
} bou32;
bou32.u32 = u32;
(*pu32)[BO32_0] = bou32.u32_1234[0];
(*pu32)[BO32_1] = bou32.u32_1234[1];
(*pu32)[BO32_2] = bou32.u32_1234[2];
(*pu32)[BO32_3] = bou32.u32_1234[3];
}


#if HAS_SW_INT64
int64 sw_get_int64_12345678(pi64)
int64_12345678 *pi64;
{
union {
int64_12345678 i64_12345678;
int64 i64;
} boi64;
boi64.i64_12345678[0] = (*pi64)[BO64_0];
boi64.i64_12345678[1] = (*pi64)[BO64_1];
boi64.i64_12345678[2] = (*pi64)[BO64_2];
boi64.i64_12345678[3] = (*pi64)[BO64_3];
boi64.i64_12345678[4] = (*pi64)[BO64_4];
boi64.i64_12345678[5] = (*pi64)[BO64_5];
boi64.i64_12345678[6] = (*pi64)[BO64_6];
boi64.i64_12345678[7] = (*pi64)[BO64_7];
return(boi64.i64);
}
#endif


int32_t sw_get_int32_3412(pi32)
int32_3412 *pi32;
{
union {
int32_3412 i32_3412;
int32_t i32;
} boi32;
boi32.i32_3412[2] = (*pi32)[BO32_0];
boi32.i32_3412[3] = (*pi32)[BO32_1];
boi32.i32_3412[0] = (*pi32)[BO32_2];
boi32.i32_3412[1] = (*pi32)[BO32_3];
return(boi32.i32);
}


void sw_set_int32_3412(pi32, i32)
int32_3412 *pi32;
int32_t i32;
{
union {
int32_3412 i32_3412;
int32_t i32;
} boi32;
boi32.i32 = i32;
(*pi32)[BO32_0] = boi32.i32_3412[2];
(*pi32)[BO32_1] = boi32.i32_3412[3];
(*pi32)[BO32_2] = boi32.i32_3412[0];
(*pi32)[BO32_3] = boi32.i32_3412[1];
}


uint32_t sw_get_uint32_3412(pu32)
uint32_3412 *pu32;
{
union {
uint32_3412 u32_3412;
uint32_t u32;
} bou32;
bou32.u32_3412[2] = (*pu32)[BO32_0];
bou32.u32_3412[3] = (*pu32)[BO32_1];
bou32.u32_3412[0] = (*pu32)[BO32_2];
bou32.u32_3412[1] = (*pu32)[BO32_3];
return(bou32.u32);
}


void sw_set_uint32_3412(pu32, u32)
uint32_3412 *pu32;
uint32_t u32;
{
union {
uint32_3412 u32_3412;
uint32_t u32;
} bou32;
bou32.u32 = u32;
(*pu32)[BO32_0] = bou32.u32_3412[2];
(*pu32)[BO32_1] = bou32.u32_3412[3];
(*pu32)[BO32_2] = bou32.u32_3412[0];
(*pu32)[BO32_3] = bou32.u32_3412[1];
}


float sw_get_float_1234(pf)
float_1234 *pf;
{
union {
float_1234 f_1234;
float f;
} bof;
bof.f_1234[0] = (*pf)[BO32_0];
bof.f_1234[1] = (*pf)[BO32_1];
bof.f_1234[2] = (*pf)[BO32_2];
bof.f_1234[3] = (*pf)[BO32_3];
return(bof.f);
}


void sw_set_float_1234(pf, f)
float_1234 *pf;
float f;
{
union {
float_1234 f_1234;
float f;
} bof;
bof.f = (float)f;
(*pf)[BO32_0] = bof.f_1234[0];
(*pf)[BO32_1] = bof.f_1234[1];
(*pf)[BO32_2] = bof.f_1234[2];
(*pf)[BO32_3] = bof.f_1234[3];
}


double sw_get_double_12345678(pd)
double_12345678 *pd;
{
union {
double_12345678 d_12345678;
double d;
} bod;
bod.d_12345678[0] = (*pd)[BO64_0];
bod.d_12345678[1] = (*pd)[BO64_1];
bod.d_12345678[2] = (*pd)[BO64_2];
bod.d_12345678[3] = (*pd)[BO64_3];
bod.d_12345678[4] = (*pd)[BO64_4];
bod.d_12345678[5] = (*pd)[BO64_5];
bod.d_12345678[6] = (*pd)[BO64_6];
bod.d_12345678[7] = (*pd)[BO64_7];
return(bod.d);
}


void sw_set_double_12345678(pd, d)
double_12345678 *pd;
double d;
{
union {
double_12345678 d_12345678;
double d;
} bod;
bod.d = d;
(*pd)[BO64_0] = bod.d_12345678[0];
(*pd)[BO64_1] = bod.d_12345678[1];
(*pd)[BO64_2] = bod.d_12345678[2];
(*pd)[BO64_3] = bod.d_12345678[3];
(*pd)[BO64_4] = bod.d_12345678[4];
(*pd)[BO64_5] = bod.d_12345678[5];
(*pd)[BO64_6] = bod.d_12345678[6];
(*pd)[BO64_7] = bod.d_12345678[7];
}

如果不与访问器一起使用,这些类型def的好处是会引发编译器错误,从而减少被遗忘的访问器错误。

typedef char int8_1[1], uint8_1[1];


typedef char int16_12[2], uint16_12[2]; /* little endian */
typedef char int16_21[2], uint16_21[2]; /* big endian */


typedef char int24_321[3], uint24_321[3]; /* Alpha Micro, PDP-11 */


typedef char int32_1234[4], uint32_1234[4]; /* little endian */
typedef char int32_3412[4], uint32_3412[4]; /* Alpha Micro, PDP-11 */
typedef char int32_4321[4], uint32_4321[4]; /* big endian */


typedef char int64_12345678[8], uint64_12345678[8]; /* little endian */
typedef char int64_34128756[8], uint64_34128756[8]; /* Alpha Micro, PDP-11 */
typedef char int64_87654321[8], uint64_87654321[8]; /* big endian */


typedef char float_1234[4]; /* little endian */
typedef char float_3412[4]; /* Alpha Micro, PDP-11 */
typedef char float_4321[4]; /* big endian */


typedef char double_12345678[8]; /* little endian */
typedef char double_78563412[8]; /* Alpha Micro? */
typedef char double_87654321[8]; /* big endian */

使用下面的代码,您可以轻松地在BigEndian和LittleEndian之间进行切换

#define uint32_t unsigned
#define uint16_t unsigned short


#define swap16(x) ((((uint16_t)(x) & 0x00ff)<<8)| \
(((uint16_t)(x) & 0xff00)>>8))


#define swap32(x) ((((uint32_t)(x) & 0x000000ff)<<24)| \
(((uint32_t)(x) & 0x0000ff00)<<8)| \
(((uint32_t)(x) & 0x00ff0000)>>8)| \
(((uint32_t)(x) & 0xff000000)>>24))

我最近写了一个宏来在C中实现这个功能,但它在c++中同样有效:

#define REVERSE_BYTES(...) do for(size_t REVERSE_BYTES=0; REVERSE_BYTES<sizeof(__VA_ARGS__)>>1; ++REVERSE_BYTES)\
((unsigned char*)&(__VA_ARGS__))[REVERSE_BYTES] ^= ((unsigned char*)&(__VA_ARGS__))[sizeof(__VA_ARGS__)-1-REVERSE_BYTES],\
((unsigned char*)&(__VA_ARGS__))[sizeof(__VA_ARGS__)-1-REVERSE_BYTES] ^= ((unsigned char*)&(__VA_ARGS__))[REVERSE_BYTES],\
((unsigned char*)&(__VA_ARGS__))[REVERSE_BYTES] ^= ((unsigned char*)&(__VA_ARGS__))[sizeof(__VA_ARGS__)-1-REVERSE_BYTES];\
while(0)

它接受任何类型,并将传入参数中的字节反转。 示例用法:< / p >

int main(){
unsigned long long x = 0xABCDEF0123456789;
printf("Before: %llX\n",x);
REVERSE_BYTES(x);
printf("After : %llX\n",x);


char c[7]="nametag";
printf("Before: %c%c%c%c%c%c%c\n",c[0],c[1],c[2],c[3],c[4],c[5],c[6]);
REVERSE_BYTES(c);
printf("After : %c%c%c%c%c%c%c\n",c[0],c[1],c[2],c[3],c[4],c[5],c[6]);
}

打印:

Before: ABCDEF0123456789
After : 8967452301EFCDAB
Before: nametag
After : gateman

上面的内容是完全可以复制/粘贴的,但这里有很多内容,所以我将逐条分解它的工作原理:

第一件值得注意的事情是整个宏被封装在do while(0)块中。这是一个常见的成语,允许在宏后面使用正常的分号。

接下来是使用名为REVERSE_BYTES的变量作为for循环的计数器。宏本身的名称用作变量名,以确保它不会与范围内的任何其他符号冲突。由于该名称是在宏的展开中使用的,因此在这里作为变量名使用时不会再次展开。

for循环中,有两个字节被引用和XOR交换(因此不需要临时变量名):

((unsigned char*)&(__VA_ARGS__))[REVERSE_BYTES]
((unsigned char*)&(__VA_ARGS__))[sizeof(__VA_ARGS__)-1-REVERSE_BYTES]

__VA_ARGS__表示给宏的任何内容,并用于增加可能传入内容的灵活性(尽管不是很多)。然后,该参数的地址被转换为unsigned char指针,以允许通过数组[]下标交换其字节。

最后一个特殊点是缺少{}大括号。它们不是必需的,因为每次交换中的所有步骤都与逗号操作符连接,使它们成为一个语句。

最后,值得注意的是,如果速度是最优先考虑的,这不是理想的方法。如果这是一个重要因素,那么其他答案中引用的一些特定于类型的宏或特定于平台的指令可能是更好的选择。然而,这种方法可以移植到所有类型、所有主要平台以及C和c++语言。

我真的很惊讶没有人提到htobeXX和betohXX函数。它们定义在end .h中,非常类似于网络函数htonXX。

下面介绍如何读取以IEEE 754 64位格式存储的double,即使您的主机使用不同的系统。

/*
* read a double from a stream in ieee754 format regardless of host
*  encoding.
*  fp - the stream
*  bigendian - set to if big bytes first, clear for little bytes
*              first
*
*/
double freadieee754(FILE *fp, int bigendian)
{
unsigned char buff[8];
int i;
double fnorm = 0.0;
unsigned char temp;
int sign;
int exponent;
double bitval;
int maski, mask;
int expbits = 11;
int significandbits = 52;
int shift;
double answer;


/* read the data */
for (i = 0; i < 8; i++)
buff[i] = fgetc(fp);
/* just reverse if not big-endian*/
if (!bigendian)
{
for (i = 0; i < 4; i++)
{
temp = buff[i];
buff[i] = buff[8 - i - 1];
buff[8 - i - 1] = temp;
}
}
sign = buff[0] & 0x80 ? -1 : 1;
/* exponet in raw format*/
exponent = ((buff[0] & 0x7F) << 4) | ((buff[1] & 0xF0) >> 4);


/* read inthe mantissa. Top bit is 0.5, the successive bits half*/
bitval = 0.5;
maski = 1;
mask = 0x08;
for (i = 0; i < significandbits; i++)
{
if (buff[maski] & mask)
fnorm += bitval;


bitval /= 2.0;
mask >>= 1;
if (mask == 0)
{
mask = 0x80;
maski++;
}
}
/* handle zero specially */
if (exponent == 0 && fnorm == 0)
return 0.0;


shift = exponent - ((1 << (expbits - 1)) - 1); /* exponent = shift + bias */
/* nans have exp 1024 and non-zero mantissa */
if (shift == 1024 && fnorm != 0)
return sqrt(-1.0);
/*infinity*/
if (shift == 1024 && fnorm == 0)
{


#ifdef INFINITY
return sign == 1 ? INFINITY : -INFINITY;
#endif
return  (sign * 1.0) / 0.0;
}
if (shift > -1023)
{
answer = ldexp(fnorm + 1.0, shift);
return answer * sign;
}
else
{
/* denormalised numbers */
if (fnorm == 0.0)
return 0.0;
shift = -1022;
while (fnorm < 1.0)
{
fnorm *= 2;
shift--;
}
answer = ldexp(fnorm, shift);
return answer * sign;
}
}

对于这套函数的其余部分,包括写和整数例程,请参阅我的github项目

https://github.com/MalcolmMcLean/ieee754

在模板函数中围绕枢轴使用老式的3-step-xor技巧进行字节交换,提供了一个灵活、快速的O(ln2)解决方案,不需要库,这里的风格也拒绝1字节类型:

template<typename T>void swap(T &t){
for(uint8_t pivot = 0; pivot < sizeof(t)/2; pivot ++){
*((uint8_t *)&t + pivot) ^= *((uint8_t *)&t+sizeof(t)-1- pivot);
*((uint8_t *)&t+sizeof(t)-1- pivot) ^= *((uint8_t *)&t + pivot);
*((uint8_t *)&t + pivot) ^= *((uint8_t *)&t+sizeof(t)-1- pivot);
}
}

似乎安全的方法是在每个单词上使用“顿音”。所以,如果你有。

std::vector<uint16_t> storage(n);  // where n is the number to be converted


// the following would do the trick
std::transform(word_storage.cbegin(), word_storage.cend()
, word_storage.begin(), [](const uint16_t input)->uint16_t {
return htons(input); });

如果您是在一个大端系统上,那么上面的代码将是一个无操作,因此我将查找您的平台使用的任何编译时条件,以确定htons是否是一个无操作。毕竟是O(n)在Mac上,它会是这样的……

#if (__DARWIN_BYTE_ORDER != __DARWIN_BIG_ENDIAN)
std::transform(word_storage.cbegin(), word_storage.cend()
, word_storage.begin(), [](const uint16_t input)->uint16_t {
return htons(input); });
#endif

如果你有c++ 17,那么添加这个头文件

#include <algorithm>

使用这个模板函数交换字节:

template <typename T>
void swapEndian(T& buffer)
{
static_assert(std::is_pod<T>::value, "swapEndian support POD type only");
char* startIndex = static_cast<char*>((void*)buffer.data());
char* endIndex = startIndex + sizeof(buffer);
std::reverse(startIndex, endIndex);
}

这样称呼它:

swapEndian (stlContainer);

这里有一个基本的函数来交换大小端序。它是基本的,但不需要补充库。

void endianness_swap(uint32_t& val) {
uint8_t a, b, c;
a = (val & 0xFF000000) >> 24;
b = (val & 0x00FF0000) >> 16;
c = (val & 0x0000FF00) >> 8;
val=(val & 0x000000FF) << 24;
val = val + (c << 16) + (b << 8) + (a);
}
void writeLittleEndianToBigEndian(void* ptrLittleEndian, void* ptrBigEndian , size_t bufLen )
{
char *pchLittleEndian = (char*)ptrLittleEndian;


char *pchBigEndian = (char*)ptrBigEndian;


for ( size_t i = 0 ; i < bufLen ; i++ )
pchBigEndian[bufLen-1-i] = pchLittleEndian[i];
}


std::uint32_t row = 0x12345678;


char buf[4];


writeLittleEndianToBigEndian( &row, &buf, sizeof(row) );

虽然没有使用固有函数有效,但肯定是可移植的。我的回答:

#include <cstdint>
#include <type_traits>


/**
* Perform an endian swap of bytes against a templatized unsigned word.
*
* @tparam value_type The data type to perform the endian swap against.
* @param value       The data value to swap.
*
* @return value_type The resulting swapped word.
*/
template <typename value_type>
constexpr inline auto endian_swap(value_type value) -> value_type
{
using half_type = typename std::conditional<
sizeof(value_type) == 8u,
uint32_t,
typename std::conditional<sizeof(value_type) == 4u, uint16_t, uint8_t>::
type>::type;


size_t const    half_bits  = sizeof(value_type) * 8u / 2u;
half_type const upper_half = static_cast<half_type>(value >> half_bits);
half_type const lower_half = static_cast<half_type>(value);


if (sizeof(value_type) == 2u)
{
return (static_cast<value_type>(lower_half) << half_bits) | upper_half;
}


return ((static_cast<value_type>(endian_swap(lower_half)) << half_bits) |
endian_swap(upper_half));
}

c++20无分支版本,现在std::endian已经存在,但在c++23之前增加了std::byteswap

#include <bit>
#include <type_traits>
#include <concepts>
#include <array>
#include <cstring>
#include <iostream>
#include <bitset>


template <int LEN, int OFF=LEN/2>
class do_swap
{
// FOR 8 bytes:
// LEN=8 (LEN/2==4)       <H><G><F><E><D><C><B><A>
// OFF=4: FROM=0, TO=7 => [A]<G><F><E><D><C><B>[H]
// OFF=3: FROM=1, TO=6 => [A][B]<F><E><D><C>[G][H]
// OFF=2: FROM=2, TO=5 => [A][B][C]<E><D>[F][G][H]
// OFF=1: FROM=3, TO=4 => [A][B][C][D][E][F][G][H]
// OFF=0: FROM=4, TO=3 => DONE
public:
enum consts {FROM=LEN/2-OFF, TO=(LEN-1)-FROM};
using NXT=do_swap<LEN, OFF-1>;
// flip the first and last for the current iteration's range
static void flip(std::array<std::byte, LEN>& b)
{
std::byte tmp=b[FROM];
b[FROM]=b[TO];
b[TO]=tmp;
NXT::flip(b);
}
};
template <int LEN>
class do_swap<LEN, 0> // STOP the template recursion
{
public:
static void flip(std::array<std::byte, LEN>&)
{
}
};


template<std::integral T, std::endian TO, std::endian FROM=std::endian::native>
requires ((TO==std::endian::big) || (TO==std::endian::little))
&& ((FROM==std::endian::big) || (FROM==std::endian::little))
class endian_swap
{
public:
enum consts {BYTE_COUNT=sizeof(T)};
static T cvt(const T integral)
{
// if FROM and TO are the same -- nothing to do
if (TO==FROM)
{
return integral;
}


// endian::big --> endian::little is the same as endian::little --> endian::big
// the bytes have to be reversed
// memcpy seems to be the most supported way to do byte swaps in a defined way
std::array<std::byte, BYTE_COUNT> bytes;
std::memcpy(&bytes, &integral, BYTE_COUNT);
do_swap<BYTE_COUNT>::flip(bytes);
T ret;
std::memcpy(&ret, &bytes, BYTE_COUNT);
return ret;
}
};


std::endian big()
{
return std::endian::big;
}


std::endian little()
{
return std::endian::little;
}


std::endian native()
{
return std::endian::native;
}


long long swap_to_big(long long x)
{
return endian_swap<long long, std::endian::big>::cvt(x);
}


long long swap_to_little(long long x)
{
return endian_swap<long long, std::endian::little>::cvt(x);
}


void show(std::string label, long long x)
{
std::cout << label << "\t: " << std::bitset<64>(x) << " (" << x << ")" << std::endl;
}


int main(int argv, char ** argc)
{
long long init=0xF8FCFEFF7F3F1F0;
long long to_big=swap_to_big(init);
long long to_little=swap_to_little(init);
show("Init", init);
show(">big", to_big);
show(">little", to_little);
}

来这里寻找一个Boost解决方案,失望地离开,但最终在其他地方找到了它。你可以使用boost::endian::endian_reverse。它被模板化/重载了所有的基元类型:

#include <iostream>
#include <iomanip>
#include "boost/endian/conversion.hpp"


int main()
{
uint32_t word = 0x01;
std::cout << std::hex << std::setfill('0') << std::setw(8) << word << std::endl;
// outputs 00000001;


uint32_t word2 = boost::endian::endian_reverse(word);
// there's also a `void ::endian_reverse_inplace(...) function
// that reverses the value passed to it in place and returns nothing


std::cout << std::hex << std::setfill('0') << std::setw(8) << word2 << std::endl;
// outputs 01000000


return 0;
}

示范

虽然,看起来c++23最终用std::byteswap解决了这个问题。(我使用的是c++17,所以这不是一个选项。)