加密,在c#中解密字符串

在c#中满足下列条件的最现代(最好)的方法是什么?

string encryptedString = SomeStaticClass.Encrypt(sourceString);


string decryptedString = SomeStaticClass.Decrypt(encryptedString);

但是最少的麻烦涉及盐,键,字节[],等等。

我一直在谷歌上搜索,对我的发现感到困惑(你可以看到类似的SO q列表,看看这是一个欺骗性的问题)。

809872 次浏览

你可能正在寻找ProtectedData类,它使用用户的登录凭证加密数据。

我所见过的最简单的加密方法是RSA

检查它的MSDN: http://msdn.microsoft.com/en-us/library/system.security.cryptography.rsacryptoserviceprovider.aspx

它确实涉及到使用字节,但当它归结到这一点时,你确实希望加密和解密很难弄清楚,否则就很容易被黑客攻击。

如果你需要在内存中存储一个密码,并且想要加密它,你应该使用SecureString:

http://msdn.microsoft.com/en-us/library/system.security.securestring.aspx

对于更一般的用途,我会使用FIPS批准的算法,如高级加密标准,以前称为Rijndael。请参阅本页的实现示例:

http://msdn.microsoft.com/en-us/library/system.security.cryptography.rijndael.aspx

试试这门课:

public class DataEncryptor
{
TripleDESCryptoServiceProvider symm;


#region Factory
public DataEncryptor()
{
this.symm = new TripleDESCryptoServiceProvider();
this.symm.Padding = PaddingMode.PKCS7;
}
public DataEncryptor(TripleDESCryptoServiceProvider keys)
{
this.symm = keys;
}


public DataEncryptor(byte[] key, byte[] iv)
{
this.symm = new TripleDESCryptoServiceProvider();
this.symm.Padding = PaddingMode.PKCS7;
this.symm.Key = key;
this.symm.IV = iv;
}


#endregion


#region Properties
public TripleDESCryptoServiceProvider Algorithm
{
get { return symm; }
set { symm = value; }
}
public byte[] Key
{
get { return symm.Key; }
set { symm.Key = value; }
}
public byte[] IV
{
get { return symm.IV; }
set { symm.IV = value; }
}


#endregion


#region Crypto


public byte[] Encrypt(byte[] data) { return Encrypt(data, data.Length); }
public byte[] Encrypt(byte[] data, int length)
{
try
{
// Create a MemoryStream.
var ms = new MemoryStream();


// Create a CryptoStream using the MemoryStream
// and the passed key and initialization vector (IV).
var cs = new CryptoStream(ms,
symm.CreateEncryptor(symm.Key, symm.IV),
CryptoStreamMode.Write);


// Write the byte array to the crypto stream and flush it.
cs.Write(data, 0, length);
cs.FlushFinalBlock();


// Get an array of bytes from the
// MemoryStream that holds the
// encrypted data.
byte[] ret = ms.ToArray();


// Close the streams.
cs.Close();
ms.Close();


// Return the encrypted buffer.
return ret;
}
catch (CryptographicException ex)
{
Console.WriteLine("A cryptographic error occured: {0}", ex.Message);
}
return null;
}


public string EncryptString(string text)
{
return Convert.ToBase64String(Encrypt(Encoding.UTF8.GetBytes(text)));
}


public byte[] Decrypt(byte[] data) { return Decrypt(data, data.Length); }
public byte[] Decrypt(byte[] data, int length)
{
try
{
// Create a new MemoryStream using the passed
// array of encrypted data.
MemoryStream ms = new MemoryStream(data);


// Create a CryptoStream using the MemoryStream
// and the passed key and initialization vector (IV).
CryptoStream cs = new CryptoStream(ms,
symm.CreateDecryptor(symm.Key, symm.IV),
CryptoStreamMode.Read);


// Create buffer to hold the decrypted data.
byte[] result = new byte[length];


// Read the decrypted data out of the crypto stream
// and place it into the temporary buffer.
cs.Read(result, 0, result.Length);
return result;
}
catch (CryptographicException ex)
{
Console.WriteLine("A cryptographic error occured: {0}", ex.Message);
}
return null;
}


public string DecryptString(string data)
{
return Encoding.UTF8.GetString(Decrypt(Convert.FromBase64String(data))).TrimEnd('\0');
}


#endregion


}

像这样使用它:

string message="A very secret message here.";
DataEncryptor keys=new DataEncryptor();
string encr=keys.EncryptString(message);


// later
string actual=keys.DecryptString(encr);

2015年12月23日更新:由于这个答案似乎得到了很多赞,我已经更新了它,以修复愚蠢的错误,并根据评论和反馈普遍改进代码。有关具体改进的列表,请参见文章的末尾。

正如其他人所说,密码学并不简单,所以最好避免“滚你自己的”。加密算法。

不过,你可以“自己卷”。类的包装器,类似于内置的RijndaelManaged加密类。

Rijndael是当前高级加密标准的算法名称,因此您使用的算法可以被认为是“最佳实践”。

RijndaelManaged类通常确实需要你“muck about”;与字节数组,盐,键,初始化向量等,但这恰恰是那种细节,可以从你的“包装”。类。

下面的类是我不久前编写的,目的正是执行您所需要的那种操作,它是一个简单的方法调用,允许使用基于字符串的密码对一些基于字符串的明文进行加密,生成的加密字符串也表示为字符串。当然,有一种等效的方法可以用相同的密码解密加密的字符串。

这段代码的第一个版本每次都使用完全相同的salt和IV值,而这个新版本每次都将生成随机的salt和IV值。由于salt和IV在给定字符串的加密和解密之间必须相同,因此salt和IV在加密时被放在密文之前,并再次从密文中提取以执行解密。这样做的结果是,用完全相同的密码加密完全相同的明文,每次都会得到完全不同的密文结果。

“strength"使用这个的方法来自于使用RijndaelManaged类来为你执行加密,同时使用System.Security.Cryptography命名空间的Rfc2898DeriveBytes函数,它将使用基于你提供的基于字符串的密码的标准和安全算法(特别是PBKDF2)生成你的加密密钥。(注意,这是对第一个版本使用的旧PBKDF1算法的改进)。

最后,需要注意的是,这仍然是未经身份验证的加密。单独加密只提供隐私(即消息对第三方未知),而认证加密旨在同时提供隐私和真实性(即接收方知道消息是由发送方发送的)。

在不知道您的确切需求的情况下,很难说这里的代码是否足够安全以满足您的需求,但是,它已经在实现的相对简单性与“质量”之间实现了良好的平衡。例如,如果你的“接收者”;是直接从可信的“发送者”接收加密字符串,然后进行身份验证甚至可能没有必要

如果你需要更复杂的东西,并提供经过身份验证的加密,请检查这篇文章的实现。

代码如下:

using System;
using System.Text;
using System.Security.Cryptography;
using System.IO;
using System.Linq;


namespace EncryptStringSample
{
public static class StringCipher
{
// This constant is used to determine the keysize of the encryption algorithm in bits.
// We divide this by 8 within the code below to get the equivalent number of bytes.
private const int Keysize = 256;


// This constant determines the number of iterations for the password bytes generation function.
private const int DerivationIterations = 1000;


public static string Encrypt(string plainText, string passPhrase)
{
// Salt and IV is randomly generated each time, but is preprended to encrypted cipher text
// so that the same Salt and IV values can be used when decrypting.
var saltStringBytes = Generate256BitsOfRandomEntropy();
var ivStringBytes = Generate256BitsOfRandomEntropy();
var plainTextBytes = Encoding.UTF8.GetBytes(plainText);
using (var password = new Rfc2898DeriveBytes(passPhrase, saltStringBytes, DerivationIterations))
{
var keyBytes = password.GetBytes(Keysize / 8);
using (var symmetricKey = new RijndaelManaged())
{
symmetricKey.BlockSize = 256;
symmetricKey.Mode = CipherMode.CBC;
symmetricKey.Padding = PaddingMode.PKCS7;
using (var encryptor = symmetricKey.CreateEncryptor(keyBytes, ivStringBytes))
{
using (var memoryStream = new MemoryStream())
{
using (var cryptoStream = new CryptoStream(memoryStream, encryptor, CryptoStreamMode.Write))
{
cryptoStream.Write(plainTextBytes, 0, plainTextBytes.Length);
cryptoStream.FlushFinalBlock();
// Create the final bytes as a concatenation of the random salt bytes, the random iv bytes and the cipher bytes.
var cipherTextBytes = saltStringBytes;
cipherTextBytes = cipherTextBytes.Concat(ivStringBytes).ToArray();
cipherTextBytes = cipherTextBytes.Concat(memoryStream.ToArray()).ToArray();
memoryStream.Close();
cryptoStream.Close();
return Convert.ToBase64String(cipherTextBytes);
}
}
}
}
}
}


public static string Decrypt(string cipherText, string passPhrase)
{
// Get the complete stream of bytes that represent:
// [32 bytes of Salt] + [32 bytes of IV] + [n bytes of CipherText]
var cipherTextBytesWithSaltAndIv = Convert.FromBase64String(cipherText);
// Get the saltbytes by extracting the first 32 bytes from the supplied cipherText bytes.
var saltStringBytes = cipherTextBytesWithSaltAndIv.Take(Keysize / 8).ToArray();
// Get the IV bytes by extracting the next 32 bytes from the supplied cipherText bytes.
var ivStringBytes = cipherTextBytesWithSaltAndIv.Skip(Keysize / 8).Take(Keysize / 8).ToArray();
// Get the actual cipher text bytes by removing the first 64 bytes from the cipherText string.
var cipherTextBytes = cipherTextBytesWithSaltAndIv.Skip((Keysize / 8) * 2).Take(cipherTextBytesWithSaltAndIv.Length - ((Keysize / 8) * 2)).ToArray();


using (var password = new Rfc2898DeriveBytes(passPhrase, saltStringBytes, DerivationIterations))
{
var keyBytes = password.GetBytes(Keysize / 8);
using (var symmetricKey = new RijndaelManaged())
{
symmetricKey.BlockSize = 256;
symmetricKey.Mode = CipherMode.CBC;
symmetricKey.Padding = PaddingMode.PKCS7;
using (var decryptor = symmetricKey.CreateDecryptor(keyBytes, ivStringBytes))
{
using (var memoryStream = new MemoryStream(cipherTextBytes))
{
using (var cryptoStream = new CryptoStream(memoryStream, decryptor, CryptoStreamMode.Read))
using (var streamReader = new StreamReader(cryptoStream, Encoding.UTF8))
{
return streamReader.ReadToEnd();
}
}
}
}
}
}


private static byte[] Generate256BitsOfRandomEntropy()
{
var randomBytes = new byte[32]; // 32 Bytes will give us 256 bits.
using (var rngCsp = new RNGCryptoServiceProvider())
{
// Fill the array with cryptographically secure random bytes.
rngCsp.GetBytes(randomBytes);
}
return randomBytes;
}
}
}

上面的类可以很简单地使用类似于下面的代码:

using System;


namespace EncryptStringSample
{
class Program
{
static void Main(string[] args)
{
Console.WriteLine("Please enter a password to use:");
string password = Console.ReadLine();
Console.WriteLine("Please enter a string to encrypt:");
string plaintext = Console.ReadLine();
Console.WriteLine("");


Console.WriteLine("Your encrypted string is:");
string encryptedstring = StringCipher.Encrypt(plaintext, password);
Console.WriteLine(encryptedstring);
Console.WriteLine("");


Console.WriteLine("Your decrypted string is:");
string decryptedstring = StringCipher.Decrypt(encryptedstring, password);
Console.WriteLine(decryptedstring);
Console.WriteLine("");


Console.WriteLine("Press any key to exit...");
Console.ReadLine();
}
}
}

(你可以下载一个简单的VS2013样例解决方案(包括一些单元测试)在这里)。

<强> 2015年/ 12月23日更新: 对代码的具体改进列表如下:

  • 修正了一个愚蠢的错误,其中加密和编码不同 解密。作为盐&IV生成的值已经改变,不再需要编码
  • 由于salt/IV的更改,前面错误地指出UTF8编码16个字符串会产生32个字节的代码注释不再适用(因为编码不再需要)。
  • 被取代的PBKDF1算法的使用已被更现代的PBKDF2算法的使用所取代。
  • 密码派生现在被适当地加了盐,而以前它根本没有加盐(另一个愚蠢的错误被压扁了)。
using System.IO;
using System.Text;
using System.Security.Cryptography;


public static class EncryptionHelper
{
public static string Encrypt(string clearText)
{
string EncryptionKey = "abc123";
byte[] clearBytes = Encoding.Unicode.GetBytes(clearText);
using (Aes encryptor = Aes.Create())
{
Rfc2898DeriveBytes pdb = new Rfc2898DeriveBytes(EncryptionKey, new byte[] { 0x49, 0x76, 0x61, 0x6e, 0x20, 0x4d, 0x65, 0x64, 0x76, 0x65, 0x64, 0x65, 0x76 });
encryptor.Key = pdb.GetBytes(32);
encryptor.IV = pdb.GetBytes(16);
using (MemoryStream ms = new MemoryStream())
{
using (CryptoStream cs = new CryptoStream(ms, encryptor.CreateEncryptor(), CryptoStreamMode.Write))
{
cs.Write(clearBytes, 0, clearBytes.Length);
cs.Close();
}
clearText = Convert.ToBase64String(ms.ToArray());
}
}
return clearText;
}
public static string Decrypt(string cipherText)
{
string EncryptionKey = "abc123";
cipherText = cipherText.Replace(" ", "+");
byte[] cipherBytes = Convert.FromBase64String(cipherText);
using (Aes encryptor = Aes.Create())
{
Rfc2898DeriveBytes pdb = new Rfc2898DeriveBytes(EncryptionKey, new byte[] { 0x49, 0x76, 0x61, 0x6e, 0x20, 0x4d, 0x65, 0x64, 0x76, 0x65, 0x64, 0x65, 0x76 });
encryptor.Key = pdb.GetBytes(32);
encryptor.IV = pdb.GetBytes(16);
using (MemoryStream ms = new MemoryStream())
{
using (CryptoStream cs = new CryptoStream(ms, encryptor.CreateDecryptor(), CryptoStreamMode.Write))
{
cs.Write(cipherBytes, 0, cipherBytes.Length);
cs.Close();
}
cipherText = Encoding.Unicode.GetString(ms.ToArray());
}
}
return cipherText;
}
}

如果你的目标是ASP。如果NET Core还不支持RijndaelManaged,你可以使用IDataProtectionProvider

首先,配置应用程序以使用数据保护:

public class Startup
{
public void ConfigureServices(IServiceCollection services)
{
services.AddDataProtection();
}
// ...
}

然后你将能够注入IDataProtectionProvider实例并使用它来加密/解密数据:

public class MyService : IService
{
private const string Purpose = "my protection purpose";
private readonly IDataProtectionProvider _provider;


public MyService(IDataProtectionProvider provider)
{
_provider = provider;
}


public string Encrypt(string plainText)
{
var protector = _provider.CreateProtector(Purpose);
return protector.Protect(plainText);
}


public string Decrypt(string cipherText)
{
var protector = _provider.CreateProtector(Purpose);
return protector.Unprotect(cipherText);
}
}

更多细节参见这篇文章